摘要:虽然最邻近决策规则能很好地解决数据集的非线性和非平衡性问题,但其没有学习过程.在此基础上,提出了一种利用聚类方法来浓缩训练样本,再根据最近邻准则进行决策的方法——核最近表面分类方法.通过实验将其与几种常用的统计分类方法进行对比,结果表明,核最近表面分类方法具有决策速度快、存储空间需求小等优点,同时也能够很好地处理非平衡数据集的分类问题.
原文链接:http://www.cqvip.com//QK/94725X/201104/40498164.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)