摘要:In all, 190 articles about neural network learning algorithms published in 1993 and 1994 are examined for the amount of experimental evaluation they contain. Some 29% of them employ not even a single realistic or real learning problem. Only 8% of the articles present results for more than one problem using real world data. Furthermore, one third of all articles do not present any quantitative comparison with a previously known algorithm. These results suggest that we should strive for better assessment practices in neural network learning algorithm research. For the long-term benefit of the field, the publication standards should be raised in this respect and easily accessible collections of benchmark problems should be built.
原文链接:http://www.sciencedirect.com/science/article/pii/0893608095001239
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)