摘要:贝叶斯学习是
机器学习研究的一个重要方向,它是以贝叶斯定理为基础,基于已知的概率分布和观察到的数据,并结合先验知识进行推理,作出最优决策的一种概率手段.本文首先针对参数和变量的不同类型分别给出四种情形的贝叶斯公式,然后结合一个指数分布的特例,研究了贝叶斯学习过程中有关信息的转换过程,指出了如何合理正确地利用先验信息、模型信息和样本信息.
原文链接:http://www.cqvip.com//QK/91153A/200904/30943511.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)