摘要:传统时间短语识别方法存在中文文本时间短语边界定位不准确和长距离依赖的问题。为此,提出一种基于条件随机场(CRFs)的时间短语识别方法。采用基于
机器学习的方法识别时间短语,分析中文文本中时间短语的词法、句法和上下文信息等语言学特征,将时间短语分为日期型和事件型2种类型,并半自动构建3个常用词表作为外部特征。在此基础上,引入能整合不同层面特征的CRFs方法,将识别问题转化为序列标注问题。实验结果表明,该方法在日期型时间短语和事件型时间短语识别上分别取得95.70%和85.75%的F1值,识别效果较好。http://www.cqvip.com//QK/95200X/201115/39071153.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)