摘要:为了克服传统BP神经网络中存在的一些缺陷,实现准确、快速预测电力系统负荷的目的,作者通过将遗传算法与神经网络结合,构造了一种遗传神经网络来进行电力系统短期负荷预测。方法的思路是:首先,利用遗传算法有指导地计算神经网络隐层节点数,从而确定一个较合理的神经网络结构;其次,由遗传算法从初始权值的解群中选取出一优秀的初始权值,克服初始权值选取的盲目性;最后,将得到的
神经网络结构和优秀的初始权值结合起来,利用改进的BP算法进行电力系统短期负荷预测。仿真计算表明该方法达到了提高预测精度和改善网络性能的要求。http://www.cqvip.com//QK/91996X/200101/5010671.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)