摘要:支持向量机(SVM)普遍应用在
机器学习领域的学习算法,广泛用于分类学习。支持向量机也应用在很多实际应用领域中。该算法也广泛地应用在煤炭系统的分类预测工作中。随着数字时代的发展,煤炭系统的数据规模也呈现大规模增长趋势。针对海量规模数据,传统的支持向量机模型不能有效地完成煤炭系统中数据的分类、回归等工作。文章针对大规模数据处理困难的问题,提出了分布式支持向量机模型。该模型针对现有流行的云计算平台,在该平台下构建基于Hadoop分布式计算框架的分布式模型,该分布式支持向量机模型能够高效、快速地完成真实数据的分类或回归任务,具有很高的效率。文中的实验部分通过大量的实验数据进一步证明了文章提出算法的可行性。http://www.cqvip.com//QK/94440A/201311/47860401.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)