摘要:目前,基于神经网络的分类系统在许多领域得到了越来越广泛的应用。但是,该系统大多采用的是离线自适应机制,即神经网络需学习新的分类知识时,要重新训练神经网络,从而大大增加神经网络的训练时间;对于重叠分类,一般是构成一个贝叶斯分类器。然而,贝叶斯分类器的构成需要关于分类数据的概率密度函数的先验知识,而这些知识常常在模式分类前是难以获得的。为了解决这些问题,文中根据模糊集合理论,提出了一种基于模糊
神经网络http://www.cqvip.com//QK/94913X/199901/3442467.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)