摘要:事件关系分类是一项研究事件之间存在何种逻辑关系的自然语言处理技术。针对事件关系分类任务中训练语料不足的问题,提出了基于Tri—Training的事件关系分类方法。该方法首先根据已标注的语料训练三个不同的分类器,以多数投票的方式从未标注集中抽取置信度较高的样本对训练集进行扩充,然后利用新的训练集重新训练分类器,反复迭代,不断完善分类模型,最终达到提升事件关系分类性能的目的。实验结果表明,以F。值为评价标准,基于Tri—Training的事件关系分类方法在四大类事件关系上的分类性能为64.36%。http://www.cqvip.com//QK/94293X/201512/666942527.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)