摘要:针对自然语言处理中普遍存在的特征缺失问题,提出了基于特征缺失补偿最大熵模型的文本分类方法。为避免数据稀疏时出现训练过适应,采用高斯先验平滑进行特征补偿,并提出基于条件最大熵计算增益和基于特征频数的混合特征选择方法。通过实验将本方法与中心法、最近邻、贝叶斯、SVM和平滑前的最大熵文本分类器进行了比较,实验结果表明基于特征缺失补偿最大熵模型分类器的综合性能超过以上算法。http://www.cqvip.com//QK/90226X/201005/33850513.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)