全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
466 0
2018-02-06
摘要:根据Bently实验台所采集的碰摩、松动、不对中、不平衡4种典型汽轮机转子振动故障信号,运用小波包分析方法对其进行能量分析并提取故障特征.分析结果表明:小波包分析与信号能量分解的故障特征提取方法,可以获得汽轮机转子振动的故障状态,有较好的故障区分度;另外由于经过小波包分解再重构后所提取的故障特征参数浓缩了汽轮机转子振动故障的全部信息,而BP神经网络具有优良的非线性映射能力,对提取的故障特征参数应用BP神经网络映射,可对汽轮机转子振动故障进行进一步的诊断.诊断结果表明:基于小波包分析及神经网络的故障诊断方法,具有较高的故障识别能力.http://www.cqvip.com//QK/90555X/200706/26227316.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群