摘要:在隐马尔可夫模型的基础上提出了基于词汇特征的汉语词性标注模型.此模型不但考虑系统t时刻的状态(词类)对t+1时刻的状态的影响,还把t时刻的观察(词)对t+1时刻的状态的影响考虑进去,使模型更加精确.由于观察的数目较大,构造观察-状态转移概率矩阵的方法难以实用,于是给观察标以特征,并训练特征-状态转移概率矩阵,使概率矩阵占用较少的存储空间,实现了模型的精确和实用性的统一.http://www.cqvip.com//QK/94913X/200304/7612800.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)