摘要:为了从众多网络流中识别出P2P流,以方便网络管理者更好地管理网络流量,提出了时频分析的思路,对网络流的时域特征进行时频分析,提取并形成时频特征参数,然后采用
机器学习的方法对网络流进行分类。选取了短时傅里叶变换、小波包分解和Choi-Williams分布三种具有代表性的时频变换对网络流进行分析,交叉验证后的分类准确率大部分都在70%以上。实验结果表明,基于时频特征的分类方法具有较好的稳定性,是传统基于时域特征的分类方法的有效补充。
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)