全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
594 0
2018-02-10
摘要:针对变工况下齿轮箱监测数据重用性低,受复杂工况影响大和已训练模型经常失效的问题,提出基于不同工况下辅助数据集的迁移成分分析方法用于设备故障诊断.迁移成分分析(Transfer Component Analysis,TCA)通过核函数将训练样本与测试样本映射到潜在空间,进而减小训练样本与测试样本的分布差异性.重点对比分析训练数据中不同工况下辅助数据所占比例对迁移成分分析算法性能的影响,通过仿真分析和实验验证得出,迁移成分分析方法相比传统机器学习算法,明显地减小了训练样本与测试样本的分布差异,具有更高的监测数据重用率与更高的诊断准确率,有效提高了齿轮箱变工况故障诊断的准确率和可靠性.

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群