摘要:查询扩展作为一门重要的信息检索技术,是以用户查询为基础,通过一定策略在原始查询中加入一些相关的扩展词,从而使得查询能够更加准确地描述用户信息需求。排序学习方法利用机器学习的知识构造排序模型对数据进行排序,是当前
机器学习与信息检索交叉领域的研究热点。该文尝试利用伪相关反馈技术,在查询扩展中引入排序学习算法,从文档集合中提取与扩展词相关的特征,训练针对于扩展词的排序模型,并利用排序模型对新查询的扩展词集合进行重新排序,将排序后的扩展词根据排序得分赋予相应的权重,加入到原始查询中进行二次检索,从而提高信息检索的准确率。在TREC数据集合上的实验结果表明,引入排序学习算法有助于提高伪相关反馈的检索性能。
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)