全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
803 0
2018-02-13
摘要:以淮南矿区潘一矿13—1煤层为研究对象,在分析勘探钻孔资料的基础上,确定了煤层埋深及厚度、顶底板岩性、地质构造和煤变质程度是影响煤层瓦斯含量的主要因素;使用BP神经网络方法建立了瓦斯含量预测模型;结合实际数据,对预测模型进行训练和检验。预测结果表明:该模型比使用多元线性回归预测能获得更高的精度,说明预测模型可靠。

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群