摘要:术语的提取显然在本体概念学习中起着重要作用,由于汉语文本中词与词之间没有明显的界限,使得领域术语特别是复合术语的提取尤为困难。针对传统提取方法缺乏语义支持、计算量大、准确率低等不足,提出了一种适用于复合术语提取的本体概念学习方法。首先利用自然语言处理技术过滤掉与术语无关的成分,对语句进行自然切割,为领域术语提取提供完整的候选数据集,以保证候选领域复合术语不被误分。在此基础上,根据术语的领域统计和分布特征,利用术语频率和信息熵进行多策略的领域术语筛选,经同义术语识别与合并,获得领域概念集。经实验验证,提出的方法能够以较高的准确率从领域文本中提取出领域单词术语和复合术语。
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)