摘要:对基于MATLAB 6.x的BP人工神经网络工具箱进行了简要的介绍,并将BP人工神经网络应用到土壤环境质量现状评价中。编制了基于MATLAB 6.x土壤环境质量评价程序,并对影响评价结果的训练集的构建、隐层神经元数量的选择、训练过程的建立等问题进行了探讨。结果表明,用随机函数rand或线性函数linspace内插生成网络的训练集是可行的,BP网络隐层的传递函数为tansig。神经元数量为5(用rand函数生成训练集)或8(用linspace函数生成训练集),输出层的传递函数为purelin,神经元数量为1。训练集中加入一定的噪声更有利于提高网络的识别能力。在此基础上,将构建的网络应用到实际土壤环境质量评价中,并将评价的结果与其他评价方法得出的结果进行了比较,表明BP人工
神经网络应用到土壤环境质量评价中是切实可行的。
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)