全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
712 0
2018-02-15
摘要:支持向量机是基于统计学习理论框架下的一种新的通用机器学习方法,是一种处理非线性分类和非线性回归的有效方法。由于具有完备的理论基础和出色的学习性能,该技术已成为当前国际机器学习界的研究热点,能较好地对应解决小样本、高维数、非线性和局部极小点等实际问题。近来,SVR方法被引入求解回归和预测问题,并在各领域中得到广泛的应用。文章提出了一种新的基于单参数的Lagrangian支持向量回归算法,并将该算法应用在集装箱吞吐量预测中。估算结果证明了这种改进的支持向量回归算法在集装箱吞吐量预测中的有效性和实用性。

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群