全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
720 0
2018-02-17
摘要:从新闻网页和博客网页中抽取出正文内容是一个非常有意义的研究问题,但是多数网页中含有大量与正文无关的噪声内容,导致很难从网页中获取正确的文本信息。分析了中文新闻与博客网页的正文特征,用实验表明了利用HTML与文本的密度比可以进行文本的识别与抽取。提出了机器学习、统计估计以及FDR三种HLML正文抽取方法,并作了大量的实验比较和分析。实验结果表明,该算法可以有效地过滤噪声而且算法的复杂度很低,效率与效果均达到一个很好的平衡。

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群