摘要:目的探讨反馈(BP)人工神经网络模型预测肾综合征出血热(HFRS)发病率的应用前景.方法利用沈阳市的气象资料(包括平均气温、相对湿度、降水量和日照)和动物疫情资料(包括鼠密度和鼠带病毒率)共6个指标作为神经网络的输入,将1984~2003年沈阳市HFRS发病率作为神经网络的输出.选择1984~2001年的数据,利用STATISTICA Neural Network(ST NN)建立BP网络预测模型,然后训练网络、预测2002和2003年HFRS的发病率.同时用上述指标建立线性预测模型,其结果与神经网络模型进行比较.结果对于BP神经网络,其平均误差率为7.89%,非线性相关系数为0.896.对于线性回归模型,其平均误差率为24.78%,非线性相关系数为0.711.结论BP人工
神经网络可以用于HFRS发病率的预测,效果好于传统的线性回归方法.
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)