摘要:为了解决在面对海量数据时
机器学习算法很难在有效时间内完成规定的任务,并且很难有效地处理高维度、海量数据等问题,提出了基于Hadoop分布式平台的谱聚类算法并行化研究。利用MapReduce编程模式,将传统的谱聚类算法进行重新编写;在该平台上用Canopy算法对数据进行预处理,以达到更好的聚类效果。实验结果表明了设计的分布式聚类算法在加速比等方面有良好的性能,并且在数据伸缩率方面效果明显,改进后的算法适合处理海量数据。
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)