数据是关于性别收入差距,是以性别为自变量,设置虚拟变量,男为1,女为0。教育程度为调节变量,设置分类变量,初中及以下为1,高中为2,大学及以上为3。收入对数为因变量。还有一堆控制变量。stata不太精通,所以做出结果不太会解释。
我想知道0.sex#2.edu是表示什么,是指和0.sex#1.edu相比,就是高中学历比初中学历收入多10.2%吗?怎么和性别收入差距联系?
能帮忙解释以下omitted出现的原因吗?
. xi: reg lnwage sex i.edu sex#i.edu i.occupation sex#i.occupation exp exp2 party age
i.edu _Iedu_1-3 (naturally coded; _Iedu_1 omitted)
i.occupation _Ioccupatio_1-5 (naturally coded; _Ioccupatio_1 omitted)
note: 1.sex#1b.edu omitted because of collinearity
note: 1.sex#2.edu omitted because of collinearity
note: 1.sex#3.edu omitted because of collinearity
note: 1.sex#1b.occupation omitted because of collinearity
note: 1.sex#2.occupation omitted because of collinearity
note: 1.sex#3.occupation omitted because of collinearity
note: 1.sex#4.occupation omitted because of collinearity
note: 1.sex#5.occupation omitted because of collinearity
note: age omitted because of collinearity
Source | SS df MS Number of obs = 7,720
-------------+---------------------------------- F(16, 7703) = 115.41
Model | 819.054094 16 51.1908809 Prob > F = 0.0000
Residual | 3416.74883 7,703 .443560798 R-squared = 0.1934
-------------+---------------------------------- Adj R-squared = 0.1917
Total | 4235.80292 7,719 .548750216 Root MSE = .666
--------------------------------------------------------------------------------
lnwage | Coef. Std. Err. t P>|t| [95% Conf. Interval]
---------------+----------------------------------------------------------------
sex | -.4690838 .0767413 -6.11 0.000 -.6195175 -.3186501
_Iedu_2 | .2807508 .0315439 8.90 0.000 .2189162 .3425853
_Iedu_3 | .6499337 .0324892 20.00 0.000 .5862461 .7136214
|
sex#edu |
0 2 | -.1143151 .0412974 -2.77 0.006 -.1952693 -.0333609
0 3 | -.219384 .0407241 -5.39 0.000 -.2992143 -.1395538
1 1 | 0 (omitted)
1 2 | 0 (omitted)
1 3 | 0 (omitted)
|
_Ioccupatio_2 | .0255839 .0601273 0.43 0.670 -.092282 .1434497
_Ioccupatio_3 | -.1966052 .0576876 -3.41 0.001 -.3096886 -.0835218
_Ioccupatio_4 | -.0438574 .064023 -0.69 0.493 -.1693599 .0816451
_Ioccupatio_5 | -.206366 .0785932 -2.63 0.009 -.36043 -.0523019
|
sex#occupation |
0 2 | -.0413752 .0762609 -0.54 0.587 -.1908672 .1081169
0 3 | -.038969 .0728785 -0.53 0.593 -.1818308 .1038927
0 4 | -.1429024 .0792419 -1.80 0.071 -.2982381 .0124333
0 5 | -.1836532 .0985477 -1.86 0.062 -.3768335 .0095272
1 1 | 0 (omitted)
1 2 | 0 (omitted)
1 3 | 0 (omitted)
1 4 | 0 (omitted)
1 5 | 0 (omitted)
|
exp | .0578042 .0037517 15.41 0.000 .0504498 .0651586
exp2 | -.0010312 .00007 -14.73 0.000 -.0011685 -.000894
party | .0739364 .0195683 3.78 0.000 .0355773 .1122956
age | 0 (omitted)
_cons | 9.670573 .0679301 142.36 0.000 9.537412 9.803735
--------------------------------------------------------------------------------