尽管知道解释如下,但还是无法理解。。。。
“
k 均值聚类法 快速高效,特别是大量数据时,准确性高一些,但是需要你自己指定聚类的类别数量
系统聚类法则是系统自己根据数据之间的距离来自动列出类别,所以通过系统聚类法 得出一个树状图,至于聚类的类别 需要自己根据树状图以及经验来确定
K-means是机器学习中一个比较常用的算法,属于无监督学习算法,其常被用于数据的聚类,只需为它指定簇的数量即可自动将数据聚合到多类中,相同簇中的数据相似度较高,不同簇中数据相似度较低。
优点:
•原理简单
•速度快
•对大数据集有比较好的伸缩性
缺点:
•需要指定聚类 数量K
•对异常值敏感
•对初始值敏感
算法接受参数 k ;然后将事先输入的n个数据对象划分为 k个聚类,以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。
”