全部版块 我的主页
论坛 数据科学与人工智能 数据分析与数据科学 R语言论坛
3714 38
2018-08-08
TBSSqPjSzfXggT5E3WadGj2AsuorsUol.jpg
English | 27 July 2018 | ISBN: 1788624149 | 376 Pages | EPUB
Explore powerful R packages to create predictive models using ensemble methods

Key Features
Implement machine learning algorithms to build ensemble-efficient models
Explore powerful R packages to create predictive models using ensemble methods
Learn to build ensemble models on large datasets using a practical approach
Book Description
Ensemble techniques are used for combining two or more similar or dissimilar machine learning algorithms to create a stronger model. Such a model delivers superior prediction power and can give your datasets a boost in accuracy.

Hands-On Ensemble Learning with R begins with the important statistical resampling methods. You will then walk through the central trilogy of ensemble techniques  bagging, random forest, and boosting  then you'll learn how they can be used to provide greater accuracy on large datasets using popular R packages. You will learn how to combine model predictions using different machine learning algorithms to build ensemble models. In addition to this, you will explore how                                                                                                                                                                                                                                                                                                                                                                                                                                                to improve the performance of your ensemble models.

By the end of this book, you will have learned how machine learning algorithms can be combined to reduce common problems and build simple efficient ensemble models with the help of real-world examples.

What you will learn
Carry out an essential review of re-sampling methods, bootstrap, and jackknife
Explore the key ensemble methods: bagging, random forests, and boosting
Use multiple algorithms to make strong predictive models
Enjoy a comprehensive treatment of boosting methods
Supplement methods with statistical tests, such as ROC
Walk through data structures in classification, regression, survival, and time series data
Use the supplied R code to implement ensemble methods
Learn stacking method to combine heterogeneous machine learning models
Who this book is for
This book is for you if you are a data scientist or machine learning developer who wants to implement machine learning techniques by building ensemble models with the power of R. You will learn how to combine different machine learning algorithms to perform efficient data processing. Basic knowledge of machine learning techniques and programming knowledge of R would be an added advantage.

Table of Contents
Introduction to Ensemble Techniques
Bootstrapping
Bagging
Random Forests
The Bare Bones Boosting Algorithms
Boosting Refinements
The General Ensemble Technique
Ensemble Diagnostics
Ensembling Regression Models
Ensembling Survival Models
Ensembling Time Series Models
What's Next?

本帖隐藏的内容

Hands-On Ensemble Learning with R.epub
大小:(7.93 MB)

只需: 10 个论坛币  马上下载




二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2018-8-8 23:01:13
kankan
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2018-8-8 23:09:29
提示: 作者被禁止或删除 内容自动屏蔽
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2018-8-8 23:25:02
thanks for sharing
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2018-8-8 23:41:27
ensemble-efficient models
不是很明白啊
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2018-8-8 23:52:50
Hands-On Ensemble Learning with R
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群