摆线,最速曲线和等时曲线
摆线的特性在名著《白鲸记》中也有描述:
「炼鲸油锅」也包含着数学的光辉。Pequod号捕鲸船的左舷的锅子里,当我用滑石打磨锅壁的时候,注意到了这个神奇的现象,所有的东西都按照摆线的规则,无论从哪儿开始,都以同样的时间滑落到锅底。
如果你还在玩四驱模型车,那么你可以告诉孩子们,如果是在一个最速曲线形状的滑道上比赛,无论赛车从哪儿起跑,比赛都是公平的。
(当然机灵的小家伙们会告诉你,红色的车子会跑的最快)。
一个符合数学要求的滑板溜碗赛场,应该两边是符合「等时曲线」的形状。如果你在这种赛场和人较劲,那么你可以放心,无论他们踩着什么器材,大家在坡底的耗时都是一样的。如果形状不如意,那么你最好别沿着坡度直接下去,最好滑出一道最速曲线的轨迹来。
再说一次渐开线
我觉得最后值得说一说渐开线,它和摆线一样有趣,而且在工作中更能发挥实际作用。比如齿轮。早期的齿轮都是按照摆线的轮廓制作的。
这种齿轮一般具有更宽的齿牙截面,因此也更强更有力,但在现代工业制造中已经很少见了。如上图所示,摆线齿轮是由两条摆线为轮廓构成的,这个样子的齿轮现在在自行车上比较常见。在动画最后,你会看到齿牙根部又被切掉了一块,这是在钟表齿轮上常见的做法(为了减少重量,更重要的是减少碰撞和摩擦。)
而如今,更常见的齿轮是以渐开线为轮廓的(想象成好多Huygen's Chops组成的齿轮就是了)。
当这种齿轮咬合的时候,两齿之间的接触点稳定,摩擦更少,运转更平稳。没有其他形状的齿轮会发生的抖动和噪音。而且这种齿轮还有一个优点就是两个齿轮之间的圆心距离可以随意改变,而不需要改变轮子的传动比(而摆线齿轮必须固定两个齿轮之间的圆心距离)。
最后,渐开线齿轮顶部和底部是平的,只有弧度的两侧,所以比较易于加工。
摆线齿轮现常见于自行车、手表、钟表上,除此以外,基本上都是渐开线齿轮的天下了。