第一次交锋
玻爱两人的第一次交锋是 1927 年的第五届索尔维会议。那可能算是一场前无古人后无来者的物理学界群英会。在这次会议的历史照片中,列出来的鼎鼎大名使你不能不吃惊。在这次与会的 29 人中,有 17人获得了诺贝尔物理学奖。
1927年第五届索尔维会议照片 (来自网络)
索尔维是一位对科学感兴趣的实业家,因发明了一种制碱法而致富。据说索尔维财大气粗后自信心倍增,发明了一种与物理实验和理论都扯不上关系的有关引力和物质的荒谬理论。尽管物理学家们对他的理论不屑一顾,但对他所举办的学术会议却是趋之若鹜。因此,当年那几届索尔维会议就变成了量子论的大型研讨会,也就是玻爱之争的重要战场。玻爱之争有三个回合值得一提,前两次起始于 1927 年和 1930 年的索尔维会议,第三次则是第七届索尔维会议后的 1935 年。
「上帝不掷骰子」
爱因斯坦对量子论的质疑要点有三个方面,也就是爱因斯坦始终坚持的经典哲学思想和因果观念:一个完备的物理理论应该具有确定性、实在性和局域性。
爱因斯坦认为,量子论中的海森伯原理违背了确定性。根据海森伯的测不准原理,一对共轭变量(比如:动量和位置,能量和时间)是不能同时准确测量的:当准确测定一个粒子在此刻的速度时,就无法测准其在此刻的位置;如果要想准确测定位置,就不可能准确地测量速度。因此他说:“上帝不掷骰子!”
这儿所谓的“上帝掷骰子”,不同于人掷骰子。在当今的科学技术领域中,统计学和概率学是常用的数学工具。人们应用统计方法来预测气候的变化,股市的走向,物种的繁衍,人心的向背。几乎在各门学科中,都离不开“概率”这个词。然而,我们在这些情况下应用概率的规律,是由于我们掌握的信息不够,或者是没有必要知道那么多。比如说,当人向上丢出一枚硬币,再用手接住时,硬币的朝向似乎是随机的,可能朝上,可能朝下。但这种随机性是因为硬币运动不易控制,从而使我们不了解硬币从手中飞出去时的详细信息。如果我们对硬币飞出时的受力情况知道得一清二楚,就完全可以预知它掉下来时的方向,因为硬币实际上遵从的是完全确定的宏观力学规律。而量子论不同于此,量子论中的随机性是本质的。换句话说:人掷骰子,是外表的或然;上帝掷骰子,是本质的或然。
所谓实在性,则类似于我们熟知的唯物主义,认为物质世界的存在不依赖于观察手段。月亮实实在在地挂在天上,不管我们看它还是不看它。局域性的意思则是说,在互相远离的两个地点,不可能有瞬时的超距作用。
各路英雄纷纷亮相
1927年10 月,那是布鲁塞尔鲜花盛开、红叶飘零的季节,著名的第五届索尔维会议在此召开。这次会议群贤毕至,济济一堂。我们似乎从这张老照片众多闪光的名字中,看到了量子论两大派别各路英雄一个个生动的形象:每个人都身怀特技,带着自己的独门法宝,斗志昂扬、精神抖擞,应邀而来。
玻尔高举着他的“ 氢原子模型”,玻恩口口声声念叨着“ 概率”,德布罗意骑着他的“波”,康普顿西装上印着“效应”二字,狄拉克夹着一个“算符”,薛定谔挎着他的“方程”,身后还藏了一只不死不活的“猫”,布拉格手提“晶体结构”模型,海森伯和他的同窗好友泡利形影不离,两人分别握着“测不准原理”和“不相容原理”,埃伦费斯特也紧握他的“浸渐原理”大招牌。
最后登场的爱因斯坦,当时四十多岁,还没有修成像后来那种一头白发乱飘的仙风道骨形象。不过,他举着划时代的两面相对论大旗,头顶光电效应的光环。因此,他洋洋洒洒跨辈份地坐到了第一排老一辈无产阶级革命家的中间。那儿有一位德高望重的白发老太太,镭和钋的发现者居里夫人。另外,我们还看到了好些别的大师们的丰功伟绩:洛伦兹的“变换”、普朗克的“常数”、朗之万的“原子论”、威耳逊的“云雾室”,等等。
尽管人人都身怀绝技,各自都有不同的独门功夫,但大家心中都藏着一个谜团——对于他们共同哺育而发展壮大起来的新理论——量子力学,应该如何解释和诠释呢?诸位大师们对此莫衷一是,众说纷纭。
两派人马旗鼓相当:玻尔的哥本哈根学派人数多一些,但爱因斯坦这边有薛定谔和德布罗意,三个重量级人物,不可小觑。
最后,就正式会议来说,这是量子论一次异常成功的大会,玻尔掌门的哥本哈根派和它对量子论的解释大获全胜。闭幕式上,爱因斯坦一直在旁边按兵不动,沉默静坐,直到玻尔结束了关于“互补原理”的演讲后,他才突然发动攻势:“很抱歉,我没有深入研究过量子力学,不过,我还是愿意谈谈一般性的看法。”然后,爱因斯坦用一个关于α 射线粒子的例子表示了对玻尔等学者发言的质疑,不过,他当时的发言相当温和。但是,在正式会议结束之后几天的讨论中,火药味就要浓多了。根据海森伯的回忆,常常是在早餐的时候,爱因斯坦设想出一个巧妙的思想实验,以为可以难倒玻尔,但到了晚餐桌上,玻尔就想出了招数,一次又一次化解了爱因斯坦的攻势。当然,到最后,谁也没有说服谁。
第二个回合
1930 年秋,第六届索尔维会议在布鲁塞尔召开。早有准备的爱因斯坦在会上向玻尔提出了他的著名的思想实验——“光子盒”。实验的装置是一个一侧有一个小洞的盒子,洞口有一块挡板,里面放了一只能控制挡板开关的机械钟。小盒里装有一定数量的辐射物质。这只钟能在某一时刻将小洞打开,放出一个光子来。这样,它跑出的时间就可精确地测量出来了。同时,小盒悬挂在弹簧秤上,小盒所减少的质量,也即光子的质量便可测得,然后利用质能关系 E=mc2 便可得到能量的损失。这样,时间和能量都同时测准了,由此可以说明测不准关系是不成立的,玻尔一派的观点是不对的。
光子盒实验装置剖面图
描述完了他的光子盒实验后,爱因斯坦看着哑口无言、搔头抓耳的玻尔,心中暗暗得意。不想好梦不长,只过了一个夜晚,第二天,玻尔居然“以其人之道,还治其人之身”,找到了一段最精彩的说辞,用爱因斯坦自己的广义相对论理论,戏剧性地指出了爱因斯坦这一思想实验的缺陷。
光子跑出后,挂在弹簧秤上的小盒质量变轻即会上移,根据广义相对论,如果时钟沿重力方向发生位移,它的快慢会发生变化,这样的话,那个小盒里机械钟读出的时间就会因为这个光子的跑出而有所改变。换言之,用这种装置,如果要测定光子的能量,就不能够精确控制光子逸出的时刻。因此,玻尔居然用广义相对论理论中的红移公式,推出了能量和时间遵循的测不准关系!
无论如何,尽管爱因斯坦当时被回击得目瞪口呆,却仍然没有被说服。不过,他自此之后,不得不有所退让,承认了玻尔对量子力学的解释不存在逻辑上的缺陷。“量子论也许是自洽的”,他说,“但却至少是不完备的”。因为他认为,一个完备的物理理论应该具有确定性、实在性和局域性!
玻尔虽然机敏地用广义相对论的理论回击了爱因斯坦“光子盒”模型的挑战,自己心中却仍然不是十分踏实,自觉辩论中有些投机取巧的嫌疑!从经典的广义相对论出发,是应该不可能得到量子力学测不准原理的,这其中许多疑问仍然有待澄清。况且,谁知道爱因斯坦下一次又会想出些什么新花招呢?玻尔口中不停地念着:“爱因斯坦,爱因斯坦……爱因斯坦,爱因斯坦……”,心中无比感慨。玻尔对这第二个回合的论战始终耿耿于怀,直到1962年去世。据说,他的工作室黑板上还一直留着当年爱因斯坦那个光子盒的图。
第三次论战
玻爱之争的第三个回合,就到了 1935 年,这场论战达到了它的顶峰。这就是我们下一篇要讲到的 EPR 佯谬,它将引领我们进入本文的主题:量子纠缠。
玻尔和爱因斯坦的第三次争论,本来应该发生在 1933 年的第七届索尔维会议上。但是,爱因斯坦未能出席这次会议,他被纳粹赶出了欧洲,刚刚风尘仆仆地到达美国,被聘为普林斯顿高等研究院教授。德布罗意和薛定谔出席了会议,但薛定谔没见到爱因斯坦暂时不想发言,德布罗意也不想单独与人辩论。这令玻尔大大松了一口气,会议上哥本哈根派唱独角戏,看起来量子论已经根基牢靠,论战似乎尘埃落定。
然而,爱因斯坦毕竟是个伟人,不是那么容易服输的。尽管他当时因战争而流离失所,未能参加索尔维会议,尽管到普林斯顿之后他的妻子身染重病,到了知天命年龄的爱因斯坦,仍然十分关注量子力学的进展,并更加深入地思考量子理论涉及的哲学问题。
笔者的老师和论文委员会成员之一的约翰·惠勒 (John Archibald Wheeler),曾经在一次聚会上,对笔者说过一段有关爱因斯坦的故事:1948 年,普林斯顿的费曼在惠勒的指导下,完成了他的博士论文,他以惠勒早期的一个想法为基础,开创了用路径积分来表述量子力学的方法。当年,惠勒曾经将费曼的论文交给爱因斯坦看,并对爱因斯坦说:“ 这个工作不错,对吧?” 又问爱因斯坦:“现在,你该相信量子论的正确性了吧!” 爱因斯坦沉思了好一会儿,脸色有些灰暗,怏怏不快地说:“也许我有些什么地方弄错了。不过,我仍旧不相信老头子 (上帝) 会掷骰子!”
EPR 佯谬
再回到玻尔和爱因斯坦的第三次论战。当年的爱因斯坦,初来乍到普林斯顿,语言尚且生疏,生活不甚顺畅,因此,他不堪孤身独战,找了两个合作者,构成了一个被物理学家们称为不是十分恰当的组合。Boris Podolsky 和Nathan Rosen 是爱因斯坦在普林斯顿高等研究院的助手。1935 年3 月,Physics Review 杂志上发表了他们和爱因斯坦共同署名的 EPR 论文。文章中描述了一个佯谬,之后,人们就以署名的三位物理学家名字的第一个字母命名,称为“EPR佯谬” [7]。
爱因斯坦等人在文中构想了一个思想实验,意为在现实中无法做,或难以做到,而使用想象力进行的实验。EPR 原文中使用粒子的坐标和动量来描述由此思想实验而导致的所谓 EPR 佯谬,其数学表述非常复杂。后来,博姆用电子自旋来描述,就简洁易懂多了。EPR 论文中涉及到“量子纠缠态”的概念。这个名词当时还尚未被爱因斯坦等3 位作者采用。“纠缠”的名字是薛定谔在 EPR 论文之后不久,得意洋洋地牵出他那只可怖的猫时候,第一次提到的[8]。因此,我们首先解释一下,何谓量子纠缠态?
量子纠缠态
读者应该还记得我们解释过的“量子叠加态”。叠加态这个概念一直贯穿本文中,从薛定谔的猫,到双缝实验中似乎同时通过两条缝的单个电子,不都是这个匪夷所思的“叠加态”在作怪吗?不过,之前对叠加态的解释,都是针对一个粒子而言的。如果把叠加态的概念用于两个以上粒子的系统,就更产生出来一些怪之又怪的现象,那些古怪行为的专利,就该归功于既叠加又纠缠的“量子纠缠态”。
比如,我们考虑一个两粒子的量子系统。两个粒子组成的系统,不外乎两种情况:一种是两个粒子互不干扰和耦合,各自遵循自已的规律。这种情况下,整个系统的状态可以写成两个粒子的状态的乘积。而每个粒子的状态,一般来说,就自旋而言,是自旋 |上> 和自旋 |下> 按一定概率分布构成的叠加态。这种情况下的系统,可看作是由两个独立的单粒子组成,除了分别都具有叠加态的性质之外,没有产生什么有意思的新东西。另一类情况则非常有意思,那就是当两个粒子互相关联,整个系统的状态无法写成两个粒子状态乘积的时候。我们借用“纠缠”这个词来描述两个粒子之间的互相关联。也就是说,这种情形下,两个粒子的叠加态“互相纠缠”在一起,使得测量结果互相影响,即使是当两个粒子分开到很远很远的距离之时,这种似乎能瞬间互相影响的“纠缠”照样存在。
何谓 EPR?
爱因斯坦等三人在他们提出的思想实验中,描述了一个不稳定的大粒子衰变成两个小粒子 (A 和B) 的情况,两个小粒子分别向相反的两个方向飞出去。假设粒子有两种可能的自旋,分别是 |上> 和 |下>,那么,如果粒子 A 的自旋为 |上>,粒子 B 的自旋便一定是 |下>,才能保持总体守恒,反之亦然。这时我们说,这两个粒子构成了量子纠缠态。
两个粒子 A 和 B 朝相反方向飞奔,它们相距越来越远,越来越远……。根据守恒定律,无论相距多远,它们应该永远是 |上>|下> 关联的。两边分别由观察者 Alice 和 Bob 对两个粒子进行测量。根据量子力学的说法,只要Alice 和Bob 还没有进行测量,每一个粒子都应该处于某种叠加态,比如说,|上>、|下> 各为 50% 概率的叠加态。然后,如果 Alice 对 A 进行测量,A 的叠加态便在一瞬间坍缩了,比如,坍缩成了 |上>。现在,问题就来了:既然 Alice 已经测量到 A 为 |上>,因为守恒的缘故,B 就一定要为 |下>。
但是,此时的 A 和 B 之间已经相隔非常遥远,比如说几万光年吧,按照量子力学的理论,B 也应该是|上>和|下>各一半的概率,为什么它能够做到总是选择|下>呢?除非A 粒子和B粒子之间有某种方式及时地“互通消息”?即使假设它们能够互相感知,那也似乎是一种超距瞬时的信号!而这超距作用又是现有的物理知识不容许的。于是,这就构成了佯谬。因此,EPR 的作者们洋洋得意地得出结论:玻尔等人对量子论的几率解释是站不住脚的。
爱因斯坦最得意的时刻,莫过于难倒了玻尔这个老朋友!他洋洋自得地倒在躺椅上,双脚架在前方的矮茶几上,将左手握的烟斗叼在口里,瞪着一对孩童般天真的大眼睛,像是不经意地望着身旁略显困惑的玻尔。
玻尔和爱因斯坦 (摄于1925 年)
两派不同的哲学
不过,此一时彼一时!这时的玻尔,已经知己知彼、老谋深算。他深思熟虑之后,很快就明白了,立刻上阵应战。玻尔知道,爱因斯坦的思路完全是经典的。爱因斯坦总是认为有一个离开观测手段而存在的实在世界。这个世界图像是和玻尔代表的哥本哈根派的“观测手段影响结果”的观点完全不一致的。玻尔认为,微观的实在世界,只有和观测手段连起来讲才有意义。在观测之前,谈及每个粒子的自旋是 |上> 或 |下> 没有任何意义。另一方面,因为两个粒子形成了一个互相纠缠的整体,只有波函数描述的整体才有意义,不能将其视为相隔甚远的两个分体,既然只是协调相关的一体,它们之间无需传递什么信息!因此,EPR 佯谬只不过是表明了两派哲学观的差别:爱因斯坦的“经典局域实在观”和玻尔一派的“量子非局域实在观”的根本区别。
当然,哲学观的不同是根深蒂固、难以改变的。爱因斯坦绝对接受不了玻尔的这种古怪的说法,即使在之后的二三十年中,玻尔的理论占了上风,量子论如日中天,它的各个分支高速发展,给人类社会带来了伟大的技术革命,爱因斯坦仍然固执地坚持他的经典信念,反对哥本哈根对量子论的诠释。
纠缠的骰子
纠缠的骰子
为了加深对纠缠态的理解,我们再用上图所示的掷骰子的例子进一步说明两个粒子的“纠缠”。纠缠着的粒子,就像上图机器中发射出来的骰子。这儿用骰子来比喻叠加态中的粒子。我们这个能发射成对骰子的机器很特别,这些成对的骰子分别朝两条路 (这儿所谓的“路”到底是什么,铁管?空气?我们也不予考究) 射出去,互相分开越来越远;并且,每个骰子在其各自的路径上不停地随机滚动,它的数值不定,是 1-6 中的一个,每个数值的几率为六分之一。图中也用 Alice 和 Bob 来代表两个不同的观察者,如果 Alice 和 Bob 在相距很远的地方分别观察这两路骰子,会得到什么结果呢?
首先,他们如果只看自已这一边的观测数据,每个人都是得到一连串的 1 到 6 之间的随机序列,每个数字出现的几率大约等于六分之一,这丝毫也不令人奇怪,这正是我们单独多次掷一个骰子时的经验。但是,当 Alice 和 Bob 将他们两人的观测结果拿到一起来比较的话,就会看出点奇怪之处了:在他们同时观测的那些时间点,两边的骰子所显示的结果总是互相关联的 (这种情况下,关联意味着“ 相等”),如果 Alice 看到的结果是 6,Bob 看到的也是 6;如果 Alice 看到的结果是 4,Bob 看到的也是 4……
量子力学中的纠缠态,就和上面例子中的一对骰子的情况类似。换言之,量子纠缠态的意思就是,两个粒子的随机行为之间,发生了某种关联。上面例子中的关联是“结果相同”,但实际上也可以是另外一种方式,比如说,两个结果相加等于 7:如果 Alice 看到的结果是 6,Bob 看到的就是1;如果 Alice 看到的结果是 4,Bob 看到的就是3……。只要有某种关联,我们就说这两个粒子互相纠缠。