全部版块 我的主页
论坛 休闲区 十二区 休闲灌水
2416 1
2018-11-08

实例详解贝叶斯推理的原理

贝叶斯推理是一种精确的数据预测方式。在数据没有期望的那么多,但却想毫无遗漏地,全面地获取预测信息时非常有用。

提及贝叶斯推理时,人们时常会带着一种敬仰的心情。其实并非想象中那么富有魔力,或是神秘。尽管贝叶斯推理背后的数学越来越缜密和复杂,但其背后概念还是非常容易理解。简言之,贝叶斯推理有助于大家得到更有力的结论,将其置于已知的答案中。

贝叶斯推理理念源自托马斯贝叶斯。三百年前,他是一位从不循规蹈矩的教会长老院牧师。贝叶斯写过两本书,一本关于神学,一本关于概率。他的工作就包括今天著名的贝叶斯定理雏形,自此以后应用于推理问题,以及有根据猜测(educated guessing)术语中。贝叶斯理念如此流行,得益于一位名叫理查·布莱斯牧师的大力推崇。此人意识到这份定理的重要性后,将其优化完善并发表。因此,此定理变得更加准确。也因此,历史上将贝叶斯定理称之为 Bayes-Price法则。

译者注:educated guessing 基于(或根据)经验(或专业知识、手头资料、事实等)所作的估计(或预测、猜测、意见等)


影院中的贝叶斯推理

640.webp (33).jpg

试想一下,你前往影院观影,前面观影的小伙伴门票掉了,此时你想引起他们的注意。此图是他们的背影图。你无法分辨他们的性别,仅仅知道他们留了长头发。那你是说,女士打扰一下,还是说,先生打扰一下。考虑到你对男人和女人发型的认知,或许你会认为这位是位女士。(本例很简单,只存在两种发长和性别)

现在将上面的情形稍加变化,此人正在排队准备进入男士休息室。依靠这个额外的信息,或许你会认为这位是位男士。此例采用常识和背景知识即可完成判断,无需思考。而贝叶斯推理是此方式的数学实现形式,得益于此,我们可以做出更加精确的预测。

640.webp (32).jpg

我们为电影院遇到的困境加上数字。首先假定影院中男女各占一半,100个人中,50个男人,50个女人。女人中,一半为长发,余下的25人为短发。而男人中,48位为短发,两位为长发。存在25个长发女人和2位长发男人,由此推断,门票持有者为女士的可能性很大。

640.webp (31).jpg

100个在男士休息室外排队,其中98名男士,2位女士为陪同。长发女人和短发女人依旧对半分,但此处仅仅各占一种。而男士长发和短发的比例依旧保持不变,按照98位男士算,此刻短发男士有94人,长发为4人。考虑到有一位长发女士和四位长发男士,此刻最有可能的是持票者为男士。这是贝叶斯推理原理的具体案例。事先知晓一个重要的信息线索,门票持有者在男士休息室外排队,可以帮助我们做出更好的预测。

为了清晰地阐述贝叶斯推理,需要花些时间清晰地定义我们的理念。不幸的是,这需要用到数学知识。除非不得已,我尽量避免此过程太过深奥,紧随我查看更多的小节,必定会从中受益。为了大家能够建立一个基础,我们需要快速地提及四个概念:概率、条件概率、联合概率以及边际概率。


概率

640.webp (30).jpg

一件事发生的概率,等于该事件发生的数目除以所有事件发生的数目。观影者为一个女士的概率为50位女士除以100位观影者,即0.5 或50%。换作男士亦如此。

640.webp (29).jpg

而在男士休息室排列此种情形下,女士概率降至0.02,男士的概率为0.98。


条件概率

640.webp (28).jpg

条件概率回答了这样的问题,倘若我知道此人是位女士,其为长发的概率是多少?条件概率的计算方式和直接得到的概率一样,但它们更像所有例子中满足某个特定条件的子集。本例中,此人为女士,拥有长发的人士的条件概率,P(long hair | woman)为拥有长发的女士数目,除以女士的总数,其结果为0.5。无论我们是否考虑男士休息室外排队,或整个影院。

640.webp (27).jpg

同样的道理,此人为男士,拥有长发的条件概率,P(long hair | man)为0.4,不管其是否在队列中。

640.webp (26).jpg

很重要的一点,条件概率P(A | B)并不等同于P(B | A)。比如P(cute | puppy)不同于P(puppy | cute)。倘若我抱着的是小狗,可爱的概率是很高的。倘若我抱着一个可爱的东西,成为小狗的概率中等偏下。它有可能是小猫、小兔子、刺猬,甚至一个小人。


联合概率

640.webp (25).jpg

联合概率适合回答这样的问题,此人为一个短发女人的概率为多少?找出答案需要两步。首先,我们先看概率是女人的概率,P(woman)。接着,我们给出头发短人士的概率,考虑到此人为女士,P(short hair | woman)。通过乘法,进行联合,给出联合概率,P(woman with short hair) = P(woman) * P(short hair | woman)。利用此方法,我们便可计算出我们已知的概率,所有观影中P(woman with long hair)为0.25,而在男士休息室队列中的P(woman with long hair)为0.1。不同是因为两个案例中的P(woman)不同。

640.webp (24).jpg

相似的,观影者中P(man with long hair) 为0.02,而在男士休息室队列中概率为0.04。

640.webp (23).jpg

和条件概率不同,联合概率和顺序无关,P(A and B)等同于P(B and A)。比如,同时拥有牛奶和油炸圈饼的概率,等同于拥有油炸圈饼和牛奶的概率。


边际概率

640.webp (22).jpg

我们最后一个基础之旅为边际概率。特别适合回答这样的问题,拥有长发人士的概率?为计算出结果,我们须累加此事发生的所有概率——即男士留长发的概率加女士留长发的概率。加上这两个概率,即给出所有观影者P(long hair)的值0.27,而男休息室队列中的P(long hair)为0.05。


贝叶斯定理

现在到了我们真正关心的部分。我们想回答这样的问题,倘若我们知道拥有长发的人士,那他们是位女士或男士的概率为?这是一个条件概率,P(man | long hair),为我们已知晓的P(long hair | man)逆方式。因为条件概率不可逆,因此,我们对这个新条件概率知之甚少。

幸运的是托马斯观察到一些很酷炫的知识可以帮到我们。

640.webp (21).jpg

根据联合概率计算规则,我们给出方程P(man with long hair)和P(long hair and man)。因为联合概率可逆,因此这两个方程等价。

640.webp (20).jpg

借助一点代数知识,我们就能解出P(man | long hair)。

640.webp (19).jpg

表达式采用A和B,替换“man”和“long hair”,于是我们得到贝叶斯定理。

640.webp (18).jpg

我们回到最初,借助贝叶斯定理,解决电影院门票困境。

640.webp (17).jpg

首先,需要计算边际概率P(long hair)。

640.webp (16).jpg

接着代入数据,计算出长发中是男士的概率。对于男士休息室队列中的观影者而言,P(man | long hair)微微0.8。这让我们更加确信一直觉,掉门票的可能是一男士。贝叶斯定理抓住了在此情形下的直觉。更重要的是,更重要的是吸纳了先验知识,男士休息室外队列中男士远多于女士。借用此先验知识,更新我们对一这情形的认识。


附件列表
640.webp.jpg

原图尺寸 97.44 KB

640.webp.jpg

640.webp (15).jpg

原图尺寸 29.57 KB

640.webp (15).jpg

640.webp (14).jpg

原图尺寸 30.72 KB

640.webp (14).jpg

640.webp (13).jpg

原图尺寸 19.46 KB

640.webp (13).jpg

640.webp (12).jpg

原图尺寸 21.86 KB

640.webp (12).jpg

640.webp (11).jpg

原图尺寸 24.98 KB

640.webp (11).jpg

640.webp (10).jpg

原图尺寸 33.98 KB

640.webp (10).jpg

640.webp (9).jpg

原图尺寸 38.56 KB

640.webp (9).jpg

640.webp (8).jpg

原图尺寸 28.88 KB

640.webp (8).jpg

640.webp (7).jpg

原图尺寸 142.22 KB

640.webp (7).jpg

640.webp (6).jpg

原图尺寸 39.92 KB

640.webp (6).jpg

640.webp (5).jpg

原图尺寸 17.1 KB

640.webp (5).jpg

640.webp (4).jpg

原图尺寸 37.11 KB

640.webp (4).jpg

640.webp (3).jpg

原图尺寸 34.15 KB

640.webp (3).jpg

640.webp (2).jpg

原图尺寸 44.58 KB

640.webp (2).jpg

640.webp (1).jpg

原图尺寸 50.86 KB

640.webp (1).jpg

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2018-12-27 10:50:19
amazing,thanks a lot~
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群