全部版块 我的主页
论坛 数据科学与人工智能 人工智能 机器学习
1242 1
2018-12-26
  • 作者:Slawomir Wierzchoń , Mieczyslaw Kłopotek
  • 出版社: Springer; 1st ed. 2018 (2018年1月29日)
  • 丛书名: Studies in Big Data
  • 精装: 421页


Modern Algorithms of Cluster Analysis (2018).pdf
大小:(6.96 MB)

只需: 2 个论坛币  马上下载


This book provides the reader with a basic understanding of the formal concepts of the cluster, clustering, partition, cluster analysis etc.

The book explains feature-based, graph-based and spectral clustering methods and discusses their formal similarities and differences. Understanding the related formal concepts is particularly vital in the epoch of Big Data; due to the volume and characteristics of the data, it is no longer feasible to predominantly rely on merely viewing the data when facing a clustering problem.

Usually clustering involves choosing similar objects and grouping them together. To facilitate the choice of similarity measures for complex and big data, various measures of object similarity, based on quantitative (like numerical measurement results) and qualitative features (like text), as well as combinations of the two, are described, as well as graph-based similarity measures for (hyper) linked objects and measures for multilayered graphs. Numerous variants demonstrating how such similarity measures can be exploited when defining clustering cost functions are also presented.

In addition, the book provides an overview of approaches to handling large collections of objects in a reasonable time. In particular, it addresses grid-based methods, sampling methods, parallelization via Map-Reduce, usage of tree-structures, random projections and various heuristic approaches, especially those used for community detection.


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2018-12-27 08:35:15
谢谢分享
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群