问题:因变量是多值无序分类(2以上,不是0,1那种)数据,自变量是一个连续变量。我要想看是否显著相关应该用什么检验?
回答:(1)如果只是想看相关性的话,可以不必区分因变量和自变量,用‘多值无序分类数据’作为因子,‘连续变量’作为outcome,用F检验(ANOVA)就可以了。如果F检验显著,则说明组间(0,1,2…)具有显著性差异,然后用组内相关性测算相关强度。这种方法可以通过Stata的anova命令来实现。
(2)检验相关性也可以采用非参数检验的办法。
(3)当然你也可以使用回归的方法来检验相关性。第一种回归:直接做‘连续变量’对‘多值无序分类数据’影响的回归,观察两个变量的显著性就可以了,因为两个变量的两个变量的相关性等价于直接单元回归。所使用的Stata命令为 regy x。
第二种回归:首先把多值无序分类数据’作为自变量,设置一组虚拟变量建模;然后把‘连续变量’当因变量,联合检验所有的系数都等于0就可以了。所使用的Stata命令为reg y x1 x2 x(n-1)。
第三种回归:采用多值无序logit/probit回归,控制其他变量,以‘多值无序分类数据’为因变量,以‘连续变量’为自变量,观察其估计系数的显著性。可以通过Stata的mlogit命令来实现。