数据结果输出如下,请问如何解读各变量间关系呢?
Run MATRIX procedure:
*************** PROCESS Procedure for SPSS Version 3.3 *******************
Written by Andrew F. Hayes, Ph.D. www.afhayes.com
Documentation available in Hayes (2018). www.guilford.com/p/hayes3
**************************************************************************
Model : 5
Y : individu
X : HPWP
M : Resilien
W : LO
Covariates:
职位 在职 工龄 学历 性别 年龄 婚姻 合同
Sample
Size: 1679
**************************************************************************
OUTCOME VARIABLE:
Resilien
Model Summary
R R-sq MSE F df1 df2 p
.5036 .2536 .1599 63.0022 9.0000 1669.0000 .0000
Model
coeff se t p LLCI ULCI
constant 2.3900 .1020 23.4288 .0000 2.1899 2.5901
HPWP .3457 .0154 22.4576 .0000 .3155 .3759
职位 -.0482 .0218 -2.2098 .0273 -.0909 -.0054
在职 -.0028 .0042 -.6667 .5051 -.0110 .0054
工龄 .0025 .0048 .5158 .6061 -.0070 .0119
学历 .0408 .0138 2.9578 .0031 .0137 .0678
性别 .0491 .0201 2.4419 .0147 .0097 .0885
年龄 .0081 .0167 .4814 .6303 -.0248 .0409
婚姻 .0157 .0168 .9324 .3513 -.0173 .0486
合同 .0467 .0297 1.5708 .1164 -.0116 .1050
**************************************************************************
OUTCOME VARIABLE:
individu
Model Summary
R R-sq MSE F df1 df2 p
.5703 .3252 .1787 66.9067 12.0000 1666.0000 .0000
Model
coeff se t p LLCI ULCI
constant 2.5031 .2237 11.1910 .0000 2.0644 2.9418
HPWP -.3060 .0617 -4.9556 .0000 -.4271 -.1849
Resilien .4302 .0270 15.9494 .0000 .3773 .4832
LO -.1637 .0572 -2.8610 .0043 -.2759 -.0515
Int_1 .0986 .0163 6.0647 .0000 .0667 .1305
职位 -.0229 .0231 -.9929 .3209 -.0682 .0224
在职 -.0009 .0044 -.1932 .8468 -.0095 .0078
工龄 .0058 .0051 1.1480 .2511 -.0041 .0158
学历 .0283 .0146 1.9315 .0536 -.0004 .0570
性别 .0032 .0213 .1513 .8797 -.0386 .0451
年龄 -.0012 .0177 -.0667 .9468 -.0359 .0336
婚姻 .0049 .0178 .2763 .7824 -.0299 .0397
合同 .0604 .0315 1.9167 .0554 -.0014 .1221
Product terms key:
Int_1 : HPWP x LO
Test(s) of highest order unconditional interaction(s):
R2-chng F df1 df2 p
X*W .0149 36.7806 1.0000 1666.0000 .0000
----------
Focal predict: HPWP (X)
Mod var: LO (W)
Conditional effects of the focal predictor at values of the moderator(s):
LO Effect se t p LLCI ULCI
3.0000 -.0102 .0261 -.3922 .6950 -.0614 .0409
3.5833 .0473 .0250 1.8928 .0586 -.0017 .0963
4.0000 .0884 .0263 3.3551 .0008 .0367 .1400
****************** DIRECT AND INDIRECT EFFECTS OF X ON Y *****************
Conditional direct effect(s) of X on Y:
LO Effect se t p LLCI ULCI
3.0000 -.0102 .0261 -.3922 .6950 -.0614 .0409
3.5833 .0473 .0250 1.8928 .0586 -.0017 .0963
4.0000 .0884 .0263 3.3551 .0008 .0367 .1400
Indirect effect(s) of X on Y:
Effect BootSE BootLLCI BootULCI
Resilien .1487 .0182 .1135 .1857
*********************** ANALYSIS NOTES AND ERRORS ************************
Level of confidence for all confidence intervals in output:
95.0000
Number of bootstrap samples for percentile bootstrap confidence intervals:
5000
W values in conditional tables are the 16th, 50th, and 84th percentiles.
NOTE: Variables names longer than eight characters can produce incorrect output.
Shorter variable names are recommended.
------ END MATRIX -----
十分感谢~~期待有大神能回复呀!