帮忙看看这个ARIMA周期模型怎么确定吧,数据是一年有5个月份,共47年的.
The SAS System 10:09 Tuesday, January 28, 2003 1
The ARIMA Procedure
Name of Variable = var1
Mean of Working Series 3.231993
Standard Deviation 0.384482
Number of Observations 235
Autocorrelations
Lag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 Std Error
0 0.147827 1.00000 | |********************| 0
1 0.081638 0.55225 | . |*********** | 0.065233
2 0.028664 0.19390 | . |**** | 0.082770
3 -0.0002500 -.00169 | . | . | 0.084681
4 -0.0036545 -.02472 | . | . | 0.084681
5 0.0064366 0.04354 | . |* . | 0.084712
6 -0.0097448 -.06592 | . *| . | 0.084807
7 -0.014978 -.10132 | .**| . | 0.085025
8 -0.0065880 -.04457 | . *| . | 0.085537
9 0.0049227 0.03330 | . |* . | 0.085636
10 0.020841 0.14098 | . |*** | 0.085691
11 0.011012 0.07449 | . |* . | 0.086673
12 0.0059109 0.03999 | . |* . | 0.086945
13 0.012899 0.08726 | . |**. | 0.087023
14 0.015945 0.10786 | . |**. | 0.087394
15 0.027975 0.18924 | . |**** | 0.087959
16 0.011145 0.07539 | . |** . | 0.089675
17 0.0050505 0.03416 | . |* . | 0.089944
18 0.0058864 0.03982 | . |* . | 0.089999
19 0.015527 0.10503 | . |** . | 0.090074
20 0.026393 0.17854 | . |**** | 0.090594
21 0.0045822 0.03100 | . |* . | 0.092079
22 -0.0047350 -.03203 | . *| . | 0.092123
23 -0.018396 -.12444 | . **| . | 0.092171
24 -0.015015 -.10157 | . **| . | 0.092883
"." marks two standard errors
Inverse Autocorrelations
Lag Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
1 -0.56021 | ***********| . |
2 0.13420 | . |*** |
3 0.01267 | . | . |
4 0.01208 | . | . |
5 -0.02689 | . *| . |
6 -0.03608 | . *| . |
7 0.14576 | . |*** |
The SAS System 10:09 Tuesday, January 28, 2003 2
The ARIMA Procedure
Inverse Autocorrelations
Lag Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
8 -0.15787 | ***| . |
9 0.12248 | . |**. |
10 -0.09084 | .**| . |
11 -0.01660 | . | . |
12 0.11595 | . |**. |
13 -0.18174 | ****| . |
14 0.16582 | . |*** |
15 -0.15673 | ***| . |
16 0.07630 | . |**. |
17 -0.03512 | . *| . |
18 0.02436 | . | . |
19 0.03105 | . |* . |
20 -0.15888 | ***| . |
21 0.19293 | . |**** |
22 -0.18230 | ****| . |
23 0.13091 | . |*** |
24 -0.02543 | . *| . |
Partial Autocorrelations
Lag Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
1 0.55225 | . |*********** |
2 -0.15982 | ***| . |
3 -0.05556 | . *| . |
4 0.04609 | . |* . |
5 0.07419 | . |* . |
6 -0.20458 | ****| . |
7 0.02715 | . |* . |
8 0.07095 | . |* . |
9 0.02386 | . | . |
10 0.10127 | . |**. |
11 -0.06945 | . *| . |
12 0.04238 | . |* . |
13 0.10029 | . |**. |
14 0.01233 | . | . |
15 0.13315 | . |*** |
16 -0.09574 | .**| . |
17 0.07846 | . |**. |
18 0.01816 | . | . |
19 0.12124 | . |**. |
20 0.05569 | . |* . |
21 -0.13188 | ***| . |
22 0.05517 | . |* . |
23 -0.17279 | ***| . |
24 0.04576 | . |* . |
The SAS System 10:09 Tuesday, January 28, 2003 3
The ARIMA Procedure
Autocorrelation Check for White Noise
To Chi- Pr >
Lag Square DF ChiSq --------------------Autocorrelations--------------------
6 83.24 6 <.0001 0.552 0.194 -0.002 -0.025 0.044 -0.066
12 93.21 12 <.0001 -0.101 -0.045 0.033 0.141 0.074 0.040
18 109.27 18 <.0001 0.087 0.108 0.189 0.075 0.034 0.040
24 127.68 24 <.0001 0.105 0.179 0.031 -0.032 -0.124 -0.102