全部版块 我的主页
论坛 数据科学与人工智能 数据分析与数据科学 python论坛
4812 11
2019-04-16
TitleInterpretable Machine Learning: A Guide for Making Black Box Models Explainable
Author: Christoph Molnar
Pub Date: 2019-01-07
ISBN: N/A
Pages: 251
Language: English
Format: PDF
Size: 10 Mb








Interpretable.Machine.Learning.2019.pdf
大小:(9.71 MB)

只需: 5 个论坛币  马上下载




This book teaches you how to make machine learning models more interpretable.
Machine learning has great potential for improving products, processes and research. But computers usually do not explain their predictions which is a barrier to the adoption of machine learning. This book is about making machine learning models and their decisions interpretable.


After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME.


All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.


The book focuses on machine learning models for tabular data (also called relational or structured data) and less on computer vision and natural language processing tasks. Reading the book is recommended for machine learning practitioners, data scientists, statisticians, and anyone else interested in making machine learning models interpretable.

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2019-4-16 10:37:39
在线版:
https://christophm.github.io/interpretable-ml-book/index.html
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2019-4-16 11:58:39
这资料更新,真是及时!!!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2019-4-16 23:36:05
jasonwu24 发表于 2019-4-16 10:34
Title:Interpretable Machine Learning: A Guide for Making Black Box Models Explainable
Author: Chri ...
支持一下
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2019-4-17 08:05:46
谢谢楼主分享
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2019-4-17 17:19:15
楼主威武,多谢分享~
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群