frankling 发表于 2010-2-21 21:21
有这样一个案例:调查一个公司雇佣员工是否存在性别歧视,收集了28个求职者的数据,其中包含雇佣(y=1)或未雇佣(y=0);受高等教育的时间,工作经验时间,和性别(male=1,female=0)。数据在附件。我用SAS9.0中的分析家(analyst),逻辑回归,得出的结果如下: 其中,性别的系数为-2.8526,意味着当性别为1,受雇佣机会更小,明显与数据中反映出的情况不符(男性明显受雇的几率大),我反复运算都是如此,请教各位高手这是为什么!!感激不尽!!
1
The LOGISTIC Procedure
Model Information
Data Set _PROJ_.DISCRIM
Response Variable hired hired
Number of Response Levels 2
Number of Observations 28
Model binary logit
Optimization Technique Fisher's scoring
Response Profile
Ordered Total
Value hired Frequency
1 1 9
2 0 19
Probability modeled is hired=1.
Class Level Information
Design
Class Value Variables
sex 0 1
1 -1
Model Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.
Model Fit Statistics
Intercept
Intercept and
Criterion Only Covariates
AIC 37.165 21.915
SC 38.497 27.244
-2 Log L 35.165 13.915
Testing Global Null Hypothesis: BETA=0
Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 21.2493 3 ChiSq
education 1 3.8720 0.0491
experience 1 4.5207 0.0335
sex 1 4.9405 0.0262
Analysis of Maximum Likelihood Estimates
Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq
Intercept 1 -11.1897 4.8002 5.4339 0.0197
education 1 1.1540 0.5865 3.8720 0.0491
experience 1 0.8777 0.4128 4.5207 0.0335
sex 0 1 -2.8526 1.2834 4.9405 0.0262
Odds Ratio Estimates
Point 95% Wald
Effect Estimate Confidence Limits
education 3.171 1.005 10.008
experience 2.405 1.071 5.402
sex 0 vs 1 0.003
frankling 发表于 2010-2-21 21:21
有这样一个案例:调查一个公司雇佣员工是否存在性别歧视,收集了28个求职者的数据,其中包含雇佣(y=1)或未雇佣(y=0);受高等教育的时间,工作经验时间,和性别(male=1,female=0)。数据在附件。我用SAS9.0中的分析家(analyst),逻辑回归,得出的结果如下: 其中,性别的系数为-2.8526,意味着当性别为1,受雇佣机会更小,明显与数据中反映出的情况不符(男性明显受雇的几率大),我反复运算都是如此,请教各位高手这是为什么!!感激不尽!!
1
The LOGISTIC Procedure
Model Information
Data Set _PROJ_.DISCRIM
Response Variable hired hired
Number of Response Levels 2
Number of Observations 28
Model binary logit
Optimization Technique Fisher's scoring
Response Profile
Ordered Total
Value hired Frequency
1 1 9
2 0 19
Probability modeled is hired=1.
Class Level Information
Design
Class Value Variables
sex 0 1
1 -1
Model Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.
Model Fit Statistics
Intercept
Intercept and
Criterion Only Covariates
AIC 37.165 21.915
SC 38.497 27.244
-2 Log L 35.165 13.915
Testing Global Null Hypothesis: BETA=0
Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 21.2493 3 ChiSq
education 1 3.8720 0.0491
experience 1 4.5207 0.0335
sex 1 4.9405 0.0262
Analysis of Maximum Likelihood Estimates
Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq
Intercept 1 -11.1897 4.8002 5.4339 0.0197
education 1 1.1540 0.5865 3.8720 0.0491
experience 1 0.8777 0.4128 4.5207 0.0335
sex 0 1 -2.8526 1.2834 4.9405 0.0262
Odds Ratio Estimates
Point 95% Wald
Effect Estimate Confidence Limits
education 3.171 1.005 10.008
experience 2.405 1.071 5.402
sex 0 vs 1 0.003
frankling 发表于 2010-2-22 10:47
Thank you, Bobguy!!
I' m new learner of SAS. I don't quite understand about "average sex level" in your reply.
What should I do to get the right result of "sex" ? Would you please tell me the right way using Analyst or the complete command syntax?
其中,性别的系数为-2.8526,意味着当性别为1,受雇佣机会更小,明显与数据中反映出的情况不符(男性明显受雇的几率大),...
Odds Ratio Estimates
Point 95% Wald
Effect Estimate Confidence Limits
education 3.171 1.005 10.008
experience 2.405 1.071 5.402
sex 0 vs 1 0.003 <0.001 0.509
frankling 发表于 2010-2-22 11:32
7# jingju11
But the coef of sex is -2.8526, which may lead to the result of " when sex =1, the P of employment is lower".
frankling 发表于 2010-2-22 12:59
10# jingju11
Yes, the default parameterization is Main Effect only in the menu of analyst. How to change the default set there? Thank you!
扫码加好友,拉您进群



收藏
