机器人学习都可以做什么
首先,机器学习专家需要让自己和同事们持有更高的标准。当有新实验设备到来时,大家总是寄希望于实验室的小伙伴们搞懂其功能,怎么校准,怎么检测到问题,还要了解其功能的限制。因此,面对机器学习时也应如此。
机器学习不是魔法,工具的使用者们必须了解如何掌控它们。
其次,当需要使用机器学习时,不同学科需要为其制定出明确的标准。合适的控制、健全性检查和错误的测量会因领域而异,所以这些都需要解释清楚,以便研究者、审查者和从业者有规可循。
第三,机器学习科学家们所受的教育需要包括一些更广泛的内容。即使有些类似于这样开源的资源存在,需要做的仍然很多。授人以鱼不如授人以渔,可能更多人只去学算法与工具,但学习如何应用算法与适当地提出质疑也很重要。
所有从事机器学习的人都正处在一个神奇的点上——计算能力、数据和算法交织在一起,在机器学习的的协助下碰撞出了新的美妙火花 ,利用好这个机会将是整个科学界义不容辞的责任。