波尔兹曼网络是一种随机网络。描述一个随机网络,总结起来主要有两点。
第一,概率分布函数。由于网络节点的取值状态是随机的,从贝叶斯网的观点来看,要描述整个网络,需要用三种概率分布来描述系统。即联合概率分布,边缘概率分布和条件概率分布。要搞清楚这三种不同的概率分布,是理解随机网络的关键,这里向大家推荐的书籍是张连文所著的《贝叶斯网引论》。很多文献上说受限波尔兹曼是一个无向图,从贝叶斯网的观点看,受限波尔兹曼网络也可以看作一个双向的有向图,即从输入层节点可以计算隐层节点取某一种状态值的概率,反之亦然。
第二,能量函数。随机
神经网络是根植于统计力学的。受统计力学中能量泛函的启发,引入了能量函数。能量函数是描述整个系统状态的一种测度。系统越有序或者概率分布越集中,系统的能量越小。反之,系统越无序或者概率分布越趋于均匀分布,则系统的能量越大。能量函数的最小值,对应于系统的最稳定状态。