12# pandahc
> summary(object)
LARS/LASSO
Call: lars(x = x, y = y)
Df Rss Cp
0 1 2621009 453.73
1 2 2510465 418.03
2 3 1700369 143.80
3 4 1527165 86.74
4 5 1365734 33.70
5 6 1324118 21.51
6 7 1308932 18.33
7 8 1275355 8.88
8 9 1270233 9.13
9 10 1269390 10.84
10 11 1264977 11.34
11 10 1264765 9.27
12 11 1263983 11.00
> min(object$Cp)
[1] 8.88
> coef.lars(object)
age sex bmi map tc ldl hdl tch ltg glu
[1,] 0.00 0.0 0.0 0.0 0 0.0 0 0 0 0.0
[2,] 0.00 0.0 60.1 0.0 0 0.0 0 0 0 0.0
[3,] 0.00 0.0 361.9 0.0 0 0.0 0 0 302 0.0
[4,] 0.00 0.0 434.8 79.2 0 0.0 0 0 375 0.0
[5,] 0.00 0.0 505.7 191.3 0 0.0 -114 0 440 0.0
[6,] 0.00 -74.9 511.3 234.2 0 0.0 -170 0 451 0.0
[7,] 0.00 -112.0 512.0 252.5 0 0.0 -196 0 452 12.1
[8,] 0.00 -197.8 522.3 297.2 -104 0.0 -224 0 515 54.8
[9,] 0.00 -226.1 526.9 314.4 -195 0.0 -152 106 530 64.5
[10,] 0.00 -227.2 526.4 315.0 -237 33.6 -135 111 545 64.6
[11,] -5.72 -234.4 522.6 320.3 -554 286.7 0 149 663 66.3
[12,] -7.01 -237.1 521.1 321.5 -580 313.9 0 140 675 67.2
[13,] -10.01 -239.8 519.8 324.4 -792 476.7 101 177 751 67.6
最小的Cp对应的beta是第八组 0.00 -197.8 522.3 297.2 -104 0.0 -224 0 515 54.8,即为最优参数?