全部版块 我的主页
论坛 金融投资论坛 六区 金融学(理论版) 金融工程(数量金融)与金融衍生品
3387 3
2010-03-14
这本书就是矿主推荐的那本,今天整理资料发现了,拿出来与大家分享,市面上有卖纸质版的,看不惯电子书的童鞋可以去买本(我就是这样

想做练习题的童鞋建议去市面上买第六版,因为第六版配习题参考答案


Book Description

This book gives an introduction to the basic theory of stochastic calculus and its applications. Examples are given throughout the text, in order to motivate and illustrate the theory and show its importance for many applications in e.g. economics, biology and physics. The basic idea of the presentation is to start from some basic results (without proofs) of the easier cases and develop the theory from there, and to concentrate on the proofs of the easier case (which nevertheless are often sufficiently general for many purposes) in order to be able to reach quickly the parts of the theory which is most important for the applications.


TableofContents

1.Introduction :::::::::::::::::::::::::::::::::::::::::::::: 1
1.1StochasticAnalogsofClassicalDi®erentialEquations.......1
1.2FilteringProblems......................................2
1.3StochasticApproachtoDeterministicBoundaryValueProb-
lems..................................................2
1.4OptimalStopping......................................3
1.5StochasticControl......................................4
1.6MathematicalFinance..................................4
2.SomeMathematicalPreliminaries :::::::::::::::::::::::: 7
2.1ProbabilitySpaces,RandomVariablesandStochasticProcesses7
2.2AnImportantExample:BrownianMotion.................11
Exercises..................................................14
3.It^oIntegrals :::::::::::::::::::::::::::::::::::::::::::::: 21
3.1ConstructionoftheIt^oIntegral..........................21
3.2SomepropertiesoftheIt^ointegral........................30
3.3ExtensionsoftheIt^ointegral............................34
Exercises..................................................37
4.TheIt^oFormulaandtheMartingaleRepresentationTheo-
rem::::::::::::::::::::::::::::::::::::::::::::::::::::::: 43
4.1The1-dimensionalIt^oformula...........................43
4.2TheMulti-dimensionalIt^oFormula.......................48
4.3TheMartingaleRepresentationTheorem..................49
Exercises..................................................54
5.StochasticDi®erentialEquations ::::::::::::::::::::::::: 61
5.1ExamplesandSomeSolutionMethods....................61
5.2AnExistenceandUniquenessResult......................66
5.3WeakandStrongSolutions..............................70
Exercises..................................................
6.TheFilteringProblem :::::::::::::::::::::::::::::::::::: 81
6.1Introduction...........................................81
6.2The1-DimensionalLinearFilteringProblem...............83
6.3TheMultidimensionalLinearFilteringProblem............102
Exercises..................................................103
7.Di®usions:BasicProperties ::::::::::::::::::::::::::::::: 109
7.1TheMarkovProperty...................................109
7.2TheStrongMarkovProperty............................112
7.3TheGeneratorofanIt^oDi®usion........................117
7.4TheDynkinFormula....................................120
7.5TheCharacteristicOperator.............................122
Exercises..................................................124
8.OtherTopicsinDi®usionTheory ::::::::::::::::::::::::: 133
8.1Kolmogorov'sBackwardEquation.TheResolvent..........133
8.2TheFeynman-KacFormula.Killing.......................137
8.3TheMartingaleProblem................................140
8.4WhenisanIt^oProcessaDi®usion?.......................142
8.5RandomTimeChange..................................147
8.6TheGirsanovTheorem..................................153
Exercises..................................................160
9.ApplicationstoBoundaryValueProblems :::::::::::::::: 167
9.1TheCombinedDirichlet-PoissonProblem.Uniqueness.......167
9.2TheDirichletProblem.RegularPoints....................169
9.3ThePoissonProblem...................................181
Exercises..................................................188
10.ApplicationtoOptimalStopping ::::::::::::::::::::::::: 195
10.1TheTime-HomogeneousCase............................195
10.2TheTime-InhomogeneousCase..........................207
10.3OptimalStoppingProblemsInvolvinganIntegral...........212
10.4ConnectionwithVariationalInequalities...................214
Exercises..................................................218
11.ApplicationtoStochasticControl ::::::::::::::::::::::::: 225
11.1StatementoftheProblem...............................225
11.2TheHamilton-Jacobi-BellmanEquation...................227
11.3Stochasticcontrolproblemswithterminalconditions........241
Exercises..................................................243TableofContentsXIX
12.ApplicationtoMathematicalFinance ::::::::::::::::::::: 249
12.1Market,portfolioandarbitrage...........................249
12.2AttainabilityandCompleteness..........................259
12.3OptionPricing.........................................267
Exercises..................................................288
AppendixA:NormalRandomVariables :::::::::::::::::::::: 295
AppendixB:ConditionalExpectation :::::::::::::::::::::::: 299
AppendixC:UniformIntegrabilityandMartingaleConver-gence ::::::::::::::::::::::::::::::::::::::::::::::::::::: 301
AppendixD:AnApproximationResult ::::::::::::::::::::::: 305
SolutionsandAdditionalHintstoSomeoftheExercises :::::: 309
References :::::::::::::::::::::::::::::::::::::::::::::::::::: 317
ListofFrequentlyUsedNotationandSymbols ::::::::::::::: 325
Index ::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 329
附件列表

abbr_fc4925b2973cd770d2ea67c2247c4fbe.pdf

大小:1.26 MB

只需: 3 个论坛币  马上下载

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2010-3-14 08:20:25
。。。。。名字竟然是乱码。。。。。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2010-3-14 08:22:50
重新传一次。。。
附件列表

abbr_fc4925b2973cd770d2ea67c2247c4fbe.pdf

大小:1.26 MB

只需: 3 个论坛币  马上下载

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2010-3-14 08:32:42
试过了,内容没问题,大家可以放心下载,顺便问句,名字怎么弄得啊????????
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群