全部版块 我的主页
论坛 金融投资论坛 六区 金融学(理论版)
3519 17
2020-01-24
Community Search over Big Graphs
by Xin Huang (Author), Laks V.S. Lakshmanan (Author), Jianliang Xu (Author)

About the Author
Xin Huang is an Assistant Professor in the Department of Computer Science, Hong Kong Baptist University. He received his B.Eng. in computer science from Xiamen University in 2010, and Ph.D. in systems engineering and engineering management from Chinese University of Hong Kong in 2014. During 2015-2016, he worked as a postdoctoral research fellow at University of British Columbia. His research interests include graph data management, big graph mining and visualization, and social network analysis.

About this Book
Communities serve as basic structural building blocks for understanding the organization of many real-world networks, including social, biological, collaboration, and communication networks.

Recently, community search over graphs has attracted significantly increasing attention, from small, simple, and static graphs to big, evolving, attributed, and location-based graphs.

In this book, we first review the basic concepts of networks, communities, and various kinds of dense subgraph models. We then survey the state of the art in community search techniques on various kinds of networks across different application areas. Specifically, we discuss cohesive community search, attributed community search, social circle discovery, and geo-social group search. We highlight the challenges posed by different community search problems. We present their motivations, principles, methodologies, algorithms, and applications, and provide a comprehensive comparison of the existing techniques. This book finally concludes by listing publicly available real-world datasets and useful tools for facilitating further research, and by offering further readings and future directions of research in this important and growing area.

Brief Contents
1 Introduction 1
    1.1 Graphs and Communities 1
        1.1.1 Graphs 1
        1.1.2 Communities 1
    1.2 Community Search 2
        1.2.1 Community Search Problem 2
        1.2.2 A Comparison with Community Detection 4
        1.2.3 Applications 5
        1.2.4 Datasets and Tools 6
    1.3 Prerequisite and Target Reader 6
    1.4 Outline of the Book 6
2 Cohesive Subgraphs 9
    2.1 Community Search and Cohesive Subgraphs 9
    2.2 Notations and Notions 10
        2.2.1 Graphs and Subgraphs 10
        2.2.2 Degree and Neighbors 11
        2.2.3 Path, Cycle, Connectivity, and Diameter 11
    2.3 Classical Dense Subgraphs. 12
        2.3.1 Clique and Quasi-Clique 13
        2.3.2 k-DBDSG, k-clan, k-club, and k-plex 13
    2.4 k-core and k-truss 16
        2.4.1 k-core 16
        2.4.2 k-truss 18
    2.5 More Dense Subgraphs 20
        2.5.1 Densest Subgraphs 20
        2.5.2 k-ecc and k-vcc 22
        2.5.3 Other Dense Subgraphs 23
    2.6 Summary 24
3 Cohesive Community Search 27
    3.1 Quasi-Clique Community Models 27
        3.1.1 Clique-Based Community Detection. 28
        3.1.2 Quasi-Clique-Based Community Search 30
    3.2 Core-Based Community Models 34
        3.2.1 Maximum-Core Community Search 35
        3.2.2 Minimum-Sized k-Core Community Search 39
        3.2.3 Influential Community Search 43
        3.2.4 Comparison of Various k-core Community Models 51
    3.3 Truss-Based Community Models 52
        3.3.1 Triangle-Connected Truss Community Search 52
        3.3.2 Closest Truss Community Search 65
    3.4 Query-Biased Densest Community Model 73
        3.4.1 Notions and Notations 73
        3.4.2 Problem Formulation 75
        3.4.3 Algorithms 75
    3.5 Summary 78
4 Attributed Community Search 83
    4.1 Introduction 83
        4.1.1 Attributed Networks 83
        4.1.2 Limitations of Cohesive Community Search without Query Attributes 85
        4.1.3 Desiderata of Good Attributed Communities 86
    4.2 K-Core-Based Attribute Community Model 87
        4.2.1 Problem Formulation 87
        4.2.2 Basic Query Processing Algorithm 89
        4.2.3 CLTree-Index-Based Query Processing Algorithms 89
    4.3 K-Truss-Based Attribute Community Model 94
        4.3.1 (k, d)-Truss 94
        4.3.2 Attribute Score Function 95
        4.3.3 Attributed Truss Community Model 97
        4.3.4 ATindex-Based Greedy Algorithm 98
    4.4 Summary 102
        4.4.1 Case Study on the DBLP Network 102
        4.4.2 Case Study on the PPI Network with Ground-Truth Communities 103
        4.4.3 Comparison between ACC and ATC Models 104
        4.4.4 Comparison with Other Related Works 105
5 Social Circle Analysis 109
    5.1 Ego-Networks 109
    5.2 Structural Diversity Search 110
        5.2.1 Motivations 110
        5.2.2 Problem Formulation 111
        5.2.3 A Simple Degree-Based Approach 112
        5.2.4 A Novel Top-k Search Framework 114
        5.2.5 Case Studies 122
    5.3 Learning to Discover Social Circles 126
        5.3.1 Attributed Community Search and Social Circle Discovery 127
        5.3.2 Problem Formulation 127
        5.3.3 A Generative Model for Social Circle Discovery 128
6 Geo-Social Group Search 131
    6.1 Geo-Social Group Search 131
    6.2 Proximity-Based Geo-Social Group Search 133
        6.2.1 Problem Statement 133
        6.2.2 R-Tree-Based Query Processing. 135
        6.2.3 Social-Aware R-Tree 136
        6.2.4 SaR-Tree-Based Query Processing. 140
    6.3 Geo-Social k-Cover Group Search 143
        6.3.1 Problem Statement 143
        6.3.2 Algorithms 145
    6.4 Geo-Social Group Search Based on Minimum Covering Circle 147
        6.4.1 Problem Statement 147
        6.4.2 Algorithms 149
7 Datasets and Tools 153
    7.1 Real-World Datasets 153
        7.1.1 Networks with Ground-Truth Communities 153
        7.1.2 Attributed Graphs with Ground-Truth Communities 154
        7.1.3 Ego-Networks with Ground-Truth Social Circles 155
        7.1.4 Geo-Social Networks 156
        7.1.5 Public-Private Collaboration Networks 157
    7.2 Query Generation and Evaluation. 158
        7.2.1 Query Generation 158
        7.2.2 Evaluation Metrics 158
    7.3 Software and Demo Systems 159
    7.4 Suggestions on Dense Subgraph Selection for Community Models 160
8 Further Readings and Future Directions 163
    8.1 Further Readings 163
        8.1.1 Clique-Based Community Search 163
        8.1.2 Core-Based Community Search 163
        8.1.3 Truss-Based Community Search 164
        8.1.4 Plex-Based Community Search 164
        8.1.5 Others 164
    8.2 Future Directions and Open Problems 165
        8.2.1 Querying Communities on Heterogeneous Information Networks 165
        8.2.2 Scalable Algorithms for Big Graphs 166
        8.2.3 Public-Private Social Networks 166
        8.2.4 Community Search on Probabilistic Graphs 166
        8.2.5 Applications and Case Studies 167
    8.3 Conclusions 167
Bibliography 169
Authors’ Biographies 187

Pages: 208 pages
Publisher: Morgan & Claypool Publishers (August 7, 2019)
Language: English
ISBN-10: 1681735970
ISBN-13: 978-1681735979

Morgan__Community Search Over Big Graphs.pdf
大小:(13.31 MB)

只需: 30 个论坛币  马上下载

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2020-1-24 23:43:38
好书!谢谢楼主分享
祝楼主金鼠王!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2020-1-25 08:17:50
jgtech 发表于 2020-1-24 23:43
好书!谢谢楼主分享
祝楼主金鼠王!
祝鼠年吉祥、安康、阖家幸福美满!鼠年大吉!万事顺意!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2020-1-25 09:00:51
Thanks
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2020-1-26 20:30:48
感谢分享!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2020-1-26 22:12:14
谢谢分享
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群