如题。我用ARIMA做得AR(2)模型,SPSS11.5中做的。但是不知道怎么分析啊,怎么看参数的结果。SPSS15中结果又改怎么分析哦。我发下11.5中我做的结果高手帮我看看啊。
MODEL: MOD_2
Model Description:
Variable: 平稳化
Regressors: MONTH_
Non-seasonal differencing: 0
No seasonal component in model.
Parameters:
AR1 ________ < value originating from estimation >
AR2 ________ < value originating from estimation >
MONTH_ ________ < value originating from estimation >
CONSTANT ________ < value originating from estimation >
95.00 percent confidence intervals will be generated.
Split group number: 1 Series length: 107
Number of cases skipped at beginning because of missing values: 1
Melard's algorithm will be used for estimation.
Termination criteria:
Parameter epsilon: .001
Maximum Marquardt constant: 1.00E+09
SSQ Percentage: .001
Maximum number of iterations: 10
Initial values:
AR1 .00144
AR2 -.29998
MONTH_ .12283
CONSTANT -.65009
Marquardt constant = .001
Adjusted sum of squares = 345.08699
Iteration History:
Iteration Adj. Sum of Squares Marquardt Constant
1 341.32828 .00100000
2 340.57067 .00010000
3 340.45899 .00001000
4 340.44492 .00000100
Conclusion of estimation phase.
Estimation terminated at iteration number 5 because:
Sum of squares decreased by less than .001 percent.
FINAL PARAMETERS:
Number of residuals 107
Standard error 1.8152636
Log likelihood -213.78083
AIC 435.56167
SBC 446.25299
Analysis of Variance:
DF Adj. Sum of Squares Residual Variance
Residuals 103 340.44325 3.2951819
Variables in the Model:
B SEB T-RATIO APPROX. PROB.
AR1 -.08818538 .08787084 -1.0035795 .31793320
AR2 -.38626653 .08409425 -4.5932572 .00001239
MONTH_ .09418712 .04288079 2.1964874 .03029932
CONSTANT -.46374995 .30516215 -1.5196837 .13165428
Covariance Matrix:
AR1 AR2
AR1 .00772128 -.00032608
AR2 -.00032608 .00707184
Correlation Matrix:
AR1 AR2
AR1 1.0000000 -.0441273
AR2 -.0441273 1.0000000
Regressor Covariance Matrix:
MONTH_ CONSTANT
MONTH_ .00183876 -.01203737
CONSTANT -.01203737 .09312394
Regressor Correlation Matrix:
MONTH_ CONSTANT
MONTH_ 1.0000000 -.9198949
CONSTANT -.9198949 1.0000000
The following new variables are being created:
Name Label
FIT_1 Fit for 平稳化 from ARIMA, MOD_2 CON
ERR_1 Error for 平稳化 from ARIMA, MOD_2 CON
LCL_1 95% LCL for 平稳化 from ARIMA, MOD_2 CON
UCL_1 95% UCL for 平稳化 from ARIMA, MOD_2 CON
SEP_1 SE of fit for 平稳化 from ARIMA, MOD_2 CON