(1)、已知$\displaystyle \Sigma :x^2+y^2+z^2=a^2,$求:
$\displaystyle \iint_{\Sigma}\frac{z-a}{(x^2+y^2+(z-a)^2)^{\frac{3}{2}}}dS.$
(2)、计算积分
$\displaystyle \int_{0}^{2\pi}d\theta \int_{0}^{\pi}e^{\sin\varphi (\cos\theta -\sin\theta )}\sin\varphi d\varphi. $
解:(1)、作坐标变换
$\begin{cases}
x=a\sin \varphi \cos \theta &, 0\leq \varphi \leq \pi \\
y=a\sin \varphi\sin \theta &, 0\leq \theta \leq 2\pi \\
z=a\cos \varphi &
\end{cases}$
则
$E=x_\varphi ^2+y_\varphi ^2+z_\varphi ^2=a^2,\\
F=x_\varphi x_\theta +y_\varphi y_\theta +z_\varphi z_\theta =0,\\
G=x_\theta ^2+y_\theta ^2+z_\theta ^2=a^2\sin ^2\varphi .\\
dS=\sqrt{EG-F^2}=a^2\sin\varphi d\theta d\varphi ,$
所以
$\begin{align*}I&=\iint_S\frac{z-a}{(x^2+y^2+(z-a)^2)^{\frac{3}{2}}} dS\\\\&=a^2\int_{0}^{2\pi}d\theta \int_{0}^{\pi}\frac{a\cos \varphi-a}{(2a^2-2a^2\cos \varphi )^{\frac{3}{2}}}\sin \varphi d\varphi\\\\&=\frac{\pi}{\sqrt{2}}\int_{0}^{\pi}\frac{\sin\varphi }{\sqrt{1-\cos\varphi}}d\varphi\\\\&=-2\pi.\end{align*}$
(2)、作坐标变换
$\begin{cases}
x=a\sin \varphi \cos \theta &, 0\leq \varphi \leq \pi \\
y=a\sin \varphi\sin \theta &, 0\leq \theta \leq 2\pi \\
z=a\cos \varphi &
\end{cases}$
$\displaystyle \Sigma :x^2+y^2+z^2=1,$
又由Possion公式:
$\displaystyle \because \iint_\Sigma f(ax+by+cz)dS=2\pi\int_{-1}^{1}f(\sqrt{a^2+b^2+c^2}u)du,$
$\displaystyle \therefore I=\iint_\Sigma e^{x-y}dS=2\pi\int_{-1}^{1}e^{\sqrt{2}u}du=\sqrt{2}\pi(e^{\sqrt{2}}-e^{-\sqrt{2}}).$
注:可以证明下例结论: