全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件
2233 1
2010-05-12
五,纯数学课程科目与教材推荐由于现在纯数学大概按照分析,几何与拓扑,代数三个大方向来分类,所以我也按照这个分类来一门一门的看,概率与数理统计我放到另外一部分来讲。
1:Analysis:
1.1:Mathematical Analysis
上面我已经说过,微积分或者数学分析在美国这边分为两个Sequences,基础的Sequence主要讲Intuition,概念以及计算,我相信大家都已经很熟。但是第二个Sequence才是精华,这个Sequence是一年的,主要教材为《Baby Rudin》,或者Strichartz的《 The Way of Analysis》,又或者Apostol 的《Mathematical Analysis》。 《Baby Rudin》最为严格,基础不好的人看起来比较枯燥,但是It deserves a year’s effort. 如果花上一年的时间讲其学好,个人认为将会受益终生,不论将来你做哪个方向。Apostol相对比较有趣点,包含了很多计算的内容,而且还包含了Complex Analysis的简单介绍,而Strichartz则是从一种纯粹Intuition的角度出发来讲述整个Calculus体系,用词非常口语化,评价则是褒贬不一。
关于这门课的重要性,我有这么一个故事。 刚来美学习时,系里夏天就安排了一个Summer Math Camp,这种安排据我所知是几乎美国好一点的Econ PHD Program都会有的,内容就是给学生复习Calculus以及Linear Algebra的东西,从而让学生早一点进入状态以便更好的进行第一年Core Course(微观,宏观,计量以及数理经济学)的学习。我们在Summer Math Camp完了后有个考试,内容就是关于数理经济学的,如果你能考过,就可以免修第一学期的Math Econ,我幸运的得以免修。还有几个同学也过了,结果我们就收到了Director of Graduate Studies的email,建议我们免修这个课的人去数学系修Honors Course for Analysis。而且,等第一年考过Qualify后,很多同学也被建议去修这个Sequence,从而导致我认识的人,不论做微观,宏观,计量,IO,还是Development几乎都修过这个课,至少是这个Sequence的第一学期的课。由此可见,基本的Mathematical Analysis是多么的重要。
个人建议:Baby Rudin与Apostol国内都有英文版(强烈建议,有英文版一定要看,千万不要读翻译过来的),基础比较好点前者为主后者为辅,基础感觉不是很Strong的后者为主,前者为辅。这两本书的大部分答案网上都可以找得到,不过一定要自己做,要不然等于没学,切记切记!!!
1.2:Real Analysis
Mathematical Analysis是数学系Undergraduate将来进Graduate School的Core Course,而Real Analysis则是Math PHD Program的Core Course。一点需要特别注意的是,千万不要将这门课跟国内的实变函数等同起来,光是内容就差的很多。国内的实变函数讲的是n维欧式空间的测度与积分,而Real Analysis则讲的是抽象空间上的测度与积分,而且这只是第一部分内容,后面还有关于Lebesgue意义下微分与积分的关系,Measure Decomposition与Radon-Nikodym 定理,基本的Functional Analysis(Banach Space,Hilbert Space甚至包括Topological Vector Space的基本概念)以及基本的Fourier Analysis(Classic Case)。也就是说,除了一点Compact Operator Theory之外,这本课包括了国内数学系本科实变与泛函分析两门课程的内容而且难度更大一点,当然这是针对我所在学校的数学系,其他学校不敢妄自揣测。
这门课比较好的教材为Rudin的《Real and Complex Analysis》(前九章),Folland <Real Analysis: Modern Techniques and their applications >,Royden的《Real Analysis》, Stein & Shakarchi <Real Analysis: Measure Theory, Integration, and Hilbert Spaces>。前三本我前前后后都学过算是,第四本只是粗略的浏览过。 粗略评论一下:Rudin的写法相信很多人都听说过,极为简略看起来,但是包含内容甚深,真的是部经典之作,还是那句话,吃透受益终生;Folland是内容写的最全最成体系的,除了包含Rudin所有书的内容外,还有专门两章讲基本的Point-Set Topology,以及专门的两章讲Fourier Analysis,而且证明写的还是很明白的,个人很喜欢这本书;Royden第一部分则是先讲了n维欧式空间的测度与积分理论,然后第二部分讲基本的Point-Set Topology以及Functional Analysis,第三部分才讲抽象的测度与积分理论,内容也算是比较全,但是行文风格我自己很不适应,很多重要的结论只是在某段中一讲,有的时候根本不知道某个句子竟然是一个很重要的定理,极度的Informal,不过作为参考还是很好的;Stein & Shakarchi则是著名的Princeton Leture Notes系列的第三本,没有细看,不过感觉作为Real Analysis的教材还是不够,只能作为参考我觉得,不能作为主攻教材。
个人建议:这四本书国内都有英文影印版了,其中Folland好像是今年才新出来的(心疼啊,我在这边花了50多刀买的),可以将Rudin与Folland作为主要教材,后两本作为参考,认真学好。
1.3:Measure Theory
其实把测度论写在这里是重复了,因为测度论的内容实际上是上面Real Analysis的主干内容与基础。之所以写在这里是因为,有些学校比如我所在的学校,考虑到很多学生比如Statistics,Financial Engeering以及咱们Econ的学生学习测度论主要用来进一步学习基于Measure-theory 的Probability theory,他们用不到那么多的Analysis的知识,因此便将这一块内容单独抽出来设置课程(感觉老外课程设置都有点市场化的感觉)。主要内容包括抽象空间上的测度与积分论与基本的泛函分析,因为泛函在Stochastic Process里面也是到处可见。当然,这里测度与积分讲的更加深刻,我上这门课的时候,光是Radon-Nikodym定理就证了整整两节课,到现在我还能记得大概的证明思路。
这门课的主要教材我当时用的是Bartle的《The Elements of Integration and Lebesgue Measure》,一本薄薄的200页教材花了我80刀,现在想来当时真是舍得花钱,换到现在肯定WS的从图书馆借出来然后去复印了。不过这80刀激励的我将这本书彻底涂成了一个花脸,到处都是Notes,想想也值了。其他的参考教材是Halmos的经典的GTM《Measure Theory》,这本书Measure Theory的经典,不过很多人觉得Notation有点老了,跟现在常用的不太一样,比如测度的Caratheodry Extention Theorem现在都是从一个Sigama-Algebra开时,那本书好像是从Sigama-Ring开始的。严士健的那本 <测度与概率>关于这部分简直是Halmos的翻版。还有本不错的书就是Dudly的《Real Analysis and Probability》,因为这本书后面就是讲Probability的,因此前面测度与积分的部分应付后面的Probability足够了。当然,你也可以参考前面Real Analysis部分的教材,比如Rudin《Real and Complex Analysis》与Royden,他们抽象测度与积分讲的还是不错的,其中Rudin证明Radon-Nikodym则是基于L^2空间的Rieze-Representation Theorem,是基于分析的,跟其他基于Measure-Decomposition的不一样。
个人建议:这门课跟Real Analysis是重复的,如果你学了前者,你只需要再补一下Measure Theory常用的证明技巧,比如Dynkin老先生的“PI-Lamda Theorem”,还有所谓的“Good Set-Bad Set”技巧等就没什么问题了;如果你不想花那么多的时间来搞Real Analysis,那么你可以学这门课,Bartle国内没有,我觉得可以用Halmos,Rudin的测度与积分部分,Halmos,或者再加上Royden。这门课掌握了,如果你什么时候需要多一点的Analysis,你可以把上面Real Analysis的教材拿来,只看你不知道的就好了。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2010-6-28 10:01:26
ding
               yixia
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群