全部版块 我的主页
论坛 经济学论坛 三区 微观经济学
41220 49
2010-05-31



目录
译者序
关于作者
前言
引言 指数函数
第1章 抽象积分
集论的记号和术语
可测性概念
简单函数
测度的初等性质
[0,∞]中的算术运算
正函数的积分
复函数的积分
零测度集所起的作用
习题
第2章 正博雷尔测度
向量空间
拓扑学预备知识
里斯表示定理
博雷尔测度的正则性
勒贝格测度
.可测函数的连续性
习题
第3章 Lp-空间
凸函数和不等式
Lp-空间
连续函数逼近
习题
第4章 希尔伯特空间的初等理论
内积和线性泛函
规范正交集
三角级数
习题
第5章 巴拿赫空间技巧的例子
巴拿赫空间
贝尔定理的推论
连续函数的傅里叶级数
L1函数的傅里叶系数
哈恩-巴拿赫定理
泊松积分的一种抽象处理
习题
第6章 复测度
全变差
绝对连续性
拉东—尼柯迪姆定理的推论
Lp上的有界线性泛函
里斯表示定理
习题
第7章 微分
测度的导数
微积分基本定理
可微变换
习题
第8章 积空间上的积分
笛卡儿积上的可测性
积测度
富比尼定理
积测度的完备化
卷积
分布函数
习题
第9章 傅里叶变换
形式上的性质
反演定理
Plancherel定理
巴拿赫代数L1
习题
第10章 全纯函数的初等性质
复微分
沿路径的积分
局部柯西定理
幂级数表示
开映射定理
整体柯西定理
残数计算
习题
第11章 调和函数
柯西-黎曼方程
泊松积分
平均值性质
泊松积分的边界表现
表示定理
习题
第12章 最大模原理
引言
施瓦茨引理
弗拉格曼-林德勒夫方法
一个内插定理
最大模定理的逆定理
习题
第13章 有理函数逼近
预备知识
龙格定理
米塔-列夫勒定理
单连通区域
习题
第14章 共形映射
角的保持性
线性分式变换
正规族
黎曼映射定理

边界上的连续性
环域的共形映射
习题
第15章 全纯函数的零点
无穷乘积
魏尔斯特拉斯因式分解定理
一个插值问题
詹森公式
布拉施克乘积
Muntz-Szasz定理
习题
第16章 解析延拓
正则点和奇点
沿曲线的延拓
单值性定理
模函数的构造
皮卡定理
习题
第17章 Hp-空间
下调和函数
空间Hp和N
F.Riesz和M.Riesz定理
因式分解定理
移位算子
共轭函数
习题
第18章 巴拿赫代数的初等理论
引言
可逆元
理想与同态
应用
习题
第19章 全纯傅里叶变换
引言
Paley和Wiener的两个定理
拟解析类
当茹瓦—卡尔曼定理
习题
第20章 用多项式一致逼近
引言
一些引理
梅尔格良定理
习题
附录 豪斯多夫极大性定理
注释
参考文献
专用符号和缩写符号一览表
索引

卢丁著名的分析学三部曲《数学分析原理》、《实分析与复分析》、《泛函分析》
http://www.pinggu.org/bbs/thread-819751-1-1.html
http://www.pinggu.org/bbs/thread-820800-1-1.html
http://www.pinggu.org/bbs/thread-820819-1-1.html
《数学分析》(第4版)---中文版 (俄)卓里奇著
http://www.pinggu.org/bbs/thread-827168-1-1.html
《矩阵分析》---中文版 Roger A.Horn,Charles R.Johnson 著
http://www.pinggu.org/bbs/thread-824850-1-1.html
《抽象代数基础教程》第3版---中文版 (美)Rotman著
http://www.pinggu.org/bbs/thread-844586-1-1.html
《泛函分析习题集》---中文版 (印)V.K.Krishnan著
http://www.pinggu.org/bbs/thread-834877-1-1.html
《概率》(第3版)---中文版 (俄罗斯)施利亚耶夫著
http://www.pinggu.org/bbs/thread-824844-1-1.html
《概率论及其应用》(第1、2卷)---中文版 (美)William Feller著
http://www.pinggu.org/bbs/thread-837218-1-1.html
《偏微分方程》---中文版 (美)Levine著
http://www.pinggu.org/bbs/thread-844575-1-1.html
《复分析基础及工程应用》(第3版)---中文版(美)E.B.Saff A.D.Snider 著
http://www.pinggu.org/bbs/thread-833496-1-1.html
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2010-6-1 08:34:03
好东西!赶紧下载!!!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2010-6-7 21:48:48
谢谢分享,学习了!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2010-6-22 22:46:35
不错,学习了,感谢
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2010-8-7 21:41:46
貌似还不错。下了
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2010-8-11 11:43:00
非常感谢啊!
正需要呢!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群