全部版块 我的主页
论坛 提问 悬赏 求职 新闻 读书 功能一区 悬赏大厅 求助成功区
1341 3
2010-05-31
Chen, S. X. and T. Huang (2007) ]Nonparametric Estimation of Copula Functions for Dependent Modeling.  Canadian Journal of Statistics, 35,  265-282.
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2010-5-31 23:23:17
This is the paper U wanted, this is the abstract:

Abstract: Copulas characterize the dependence among components of random vectors. Unlike marginal

and joint distributions, which are directly observable, the copula of a random vector is a hidden dependence

structure that links the joint distribution with its margins. Choosing a parametric copula model is thus a

nontrivial task but it can be facilitated by relying on a nonparametric estimator. Here the authors propose

a kernel estimator of the copula that is mean square consistent everywhere on the support. They determine

the bias and variance of this estimator. They also study the effects of kernel smoothing on copula estimation.

They then propose a smoothing bandwidth selection rule based on the derived bias and variance.

After confirming their theoretical findings through simulations, they use their kernel estimator to formulate

a goodness-of-fit test for parametric copula models.
附件: 您需要登录才可以下载或查看附件。没有帐号?我要注册
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2010-6-1 10:46:06
不好意思,已经找到了,多谢
2# probability
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2010-6-1 11:02:43
人家费心思找到购买不好吗?
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群