全部版块 我的主页
论坛 数据科学与人工智能 数据分析与数据科学 R语言论坛
1854 6
2010-06-23
nonlinear mixed model estimation done with the original data set, but not converge with some selected sub data sets

any simple idea about how to solve? (using R built in nlme; and I've tried to change the initial value by using those estimated by nonlinear model without random effect, but not very effective)

Thanks.
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2010-7-1 10:49:09
自己顶一下——赚钱买书
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2010-7-1 12:48:31
Was subset randomly selected cross the whole data?
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2010-7-8 09:43:28
yes, by nonparametric bootstrap. Thanks.
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2010-7-8 21:39:36
I only know about using Bootstrap to validate the model by picking up the random sample from original data file with replacement. Due to the nature of replacement, Bootstrap sample may cause the convergent problem, and that's why validation need to be done more times, say 100 times. Then it would give you robust measurements of  models from bootstrap subsets, and assess the variability of models' coefficient.  

So are you doing model validation ???
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2010-7-9 11:01:39
no, I'm doing model selection, but the idea is similar as validation, and I'm doing 10,000 times simulation with 80% of the original sample size without replacement
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群