1# peijiamei
是不是这些啊
1 title ’Patterns of Diabetes’;
2 data diabetes;
3 input Age BaseDeficit CPeptide @@;
4 logCP = log(CPeptide);
5 datalines;
NOTE: INPUT 语句到达一行的末尾,SAS 已转到新的一行。
NOTE: 数据集 WORK.DIABETES 有 43 个观测和 4 个变量。
NOTE: “DATA 语句”所用时间(总处理时间):
实际时间 0.70 秒
CPU 时间 0.14 秒
21 ;
22 run;
23 title ’Patterns of Diabetes’;
24 proc gam data=diabetes;
NOTE: 正在写入 HTML Body(主体)文件: sashtml.htm
25 model logCP = spline(age) spline(BaseDeficit);
26 output out=estimates p;
27 run;
NOTE: 数据集 WORK.ESTIMATES 有 43 个观测和 7 个变量。
NOTE: “PROCEDURE GAM”所用时间(总处理时间):
实际时间 2.17 秒
CPU 时间 0.45 秒
The GAM Procedure
Dependent Variable: logCP
Smoothing Model Component(s): spline(Age) spline(BaseDeficit)
Summary of Input Data Set
Number of Observations 43
Number of Missing Observations 0
Distribution Gaussian
Link Function Identity
Iteration Summary and Fit Statistics
Final Number of Backfitting Iterations 5
Final Backfitting Criterion 5.542759E-10
The Deviance of the Final Estimate 0.4180791576
The backfitting algorithm converged.
Regression Model Analysis
Parameter Estimates
Parameter Standard
Parameter Estimate Error t Value Pr > |t|
Intercept 1.48141 0.05120 28.93 <.0001
Linear(Age) 0.01437 0.00437 3.28 0.0024
Linear(BaseDeficit) 0.00807 0.00247 3.27 0.0025
Smoothing Model Analysis
Fit Summary for Smoothing Components
Num
Smoothing Unique
Component Parameter DF GCV Obs
Spline(Age) 0.995582 3.000000 0.011675 37
Spline(BaseDeficit) 0.995299 3.000000 0.012437 39
Smoothing Model Analysis
Analysis of Deviance
Sum of
Source DF Squares Chi-Square Pr > ChiSq
Spline(Age) 3.00000 0.150761 12.2605 0.0065
Spline(BaseDeficit) 3.00000 0.081273 6.6095 0.0854