全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件
7437 13
2010-07-19
Matrix Analysis for Statistics Book DescriptionA complete, self-contained introduction to matrix analysis theory and practice Matrix methods have evolved from a tool for expressing statistical problems to an indispensable part of the development, understanding, and use of various types of complex statistical analyses. This evolution has made matrix methods a vital part of statistical education. Traditionally, matrix methods are taught in courses on everything from regression analysis to stochastic processes, thus creating a fractured view of the topic. This updated second edition of "Matrix Analysis for Statistics" offers readers a unique, unified view of matrix analysis theory and methods. "Matrix Analysis for Statistics, Second Edition" provides in-depth, step-by-step coverage of the most common matrix methods now used in statistical applications, including eigenvalues and eigenvectors; the Moore-Penrose inverse; matrix differentiation; the distribution of quadratic forms; and more. The subject matter is presented in a theorem/proof format, allowing for a smooth transition from one topic to another. Proofs are easy to follow, and the author carefully justifies every step. Accessible even for readers with a cursory background in statistics, yet rigorous enough for students in statistics, this new edition is the ideal introduction to matrix analysis theory and practice. The book features: Self-contained chapters, which allow readers to select individual topics or use the reference sequentially Extensive examples and chapter-end practice exercises, many of which involve the use of matrix methods in statistical analyses New material on elliptical distributions and new expanded coverage of such topics as eigenvalueinequalities and matrices partitioned in 2 by 2 form, in particular, results relating the rank, generalized inverse, eigenvalues of such matrices to their submatrices, and much more Optional sections for mathematically advanced readers
"Matrix Analysis for Statistics, Second Edition" provides in-depth, step-by-step coverage of the most common matrix methods now used in statistical applications, including eigenvalues and eigenvectors, the Moore-Penrose inverse, matrix differentiation, the distribution of quadratic forms, and more. The subject matter is presented in a theorem/proof format, allowing for a smooth transition from one topic to another. Proofs are easy to follow, and the author carefully justifies every step. Accessible even for readers with a cursory background in statistics, yet rigorous enough for students in statistics, this new edition is the ideal introduction to matrix analysis theory and practice.
James R Schott has contributed to Matrix Analysis for Statistics as an author. JAMES R. SCHOTT, Professor of Statistics at the University of Central Florida, received his PhD in statistics at the University of Florida. He has published extensively in the area of multivariate analysis with articles appearing in journals such as Biometrika, "Journal of the American Statistical Association," and "Journal of Multivariate Analysis,"
附件列表

Matrix Analysis for Statistics.rar

大小:3 MB

只需: 1 个论坛币  马上下载

本附件包括:

  • Matrix Analysis for Statistics.djvu

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2010-7-19 13:29:10
thanks  so much
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2010-8-8 20:09:08
看一眼。,。。。。。。。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2010-11-21 17:20:04
多谢楼主了
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2010-12-4 21:52:18
没有论坛币了
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2011-4-30 08:21:07
thanks  so much!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群