您好!麻烦您帮我看一下下面的程序,我在R中估计LSTAR模型时,估计的很顺利,但是我想查看中间过程中产生的多有变量结果老是错误:
> sum.s<-summary(ndx.lstar)
错误于summary.lstar(ndx.lstar) : dims [product 48]与对象长度[0]不匹配
> summary(ndx.lstar)
错误于summary.lstar(ndx.lstar) : dims [product 48]与对象长度[0]不匹配
请问您一下这是什么原因呢?希望您给予指导,期待您的回复,谢谢了!
> getwd()
[1] "d:/我的文档"
> svpdx <- read.table("data.txt", header = TRUE);
> svpdx
cpi rpi m2
1 3.4 2.9 0.26524514
2 6.4 5.4 0.31278198
3 14.7 13.2 0.37310154
4 24.1 21.7 0.34529154
5 17.1 14.8 0.29467111
6 8.3 6.1 -0.03867458
7 2.8 0.8 0.34668927
8 -0.8 -2.6 0.17245702
9 -1.4 -3.0 0.14411363
10 0.4 -1.5 -0.31433668
11 0.7 -0.8 0.87572994
12 -0.8 -1.3 0.16337324
13 1.2 -0.1 0.19679602
14 3.9 2.8 0.18161695
15 1.8 0.8 0.14387323
16 1.5 1.0 0.18886459
17 4.8 3.8 0.15787746
18 5.9 5.9 0.18875571
19 -0.7 -1.2 0.18736354
> x <- svpdx$cpi
> x
[1] 3.4 6.4 14.7 24.1 17.1 8.3 2.8 -0.8 -1.4 0.4 0.7 -0.8 1.2 3.9 1.8 1.5 4.8 5.9 -0.7
> y<-svpdx$rpi
> y
[1] 2.9 5.4 13.2 21.7 14.8 6.1 0.8 -2.6 -3.0 -1.5 -0.8 -1.3 -0.1 2.8 0.8 1.0 3.8 5.9 -1.2
> z<-svpdx$m2
> z
[1] 0.26524514 0.31278198 0.37310154 0.34529154 0.29467111 -0.03867458 0.34668927 0.17245702 0.14411363
[10] -0.31433668 0.87572994 0.16337324 0.19679602 0.18161695 0.14387323 0.18886459 0.15787746 0.18875571
[19] 0.18736354
> library(tsDyn)
> ndx.lstar <- lstar(x, m=3,d=1, thVar=z,control=list(maxit=3000));
Using maximum autoregressive order for low regime: mL = 3
Using maximum autoregressive order for high regime: mH = 3
Using only first 16 elements of thVar
Performing grid search for starting values...
Starting values fixed: gamma = 40 , th = 0.3291658 ; SSE = 118.9413
Optimization algorithm converged
Optimized values fixed for regime 2 : gamma = 48.01837 , th = 0.3223614
> rdx.lstar <- lstar(y, m=3,d=1, thVar=z,control=list(maxit=3000));
Using maximum autoregressive order for low regime: mL = 3
Using maximum autoregressive order for high regime: mH = 3
Using only first 16 elements of thVar
Performing grid search for starting values...
Starting values fixed: gamma = 40 , th = 0.352213 ; SSE = 119.8971
Optimization algorithm converged
Optimized values fixed for regime 2 : gamma = 45.87497 , th = 0.3458736
> ndx.lstar
Non linear autoregressive model
LSTAR model
Coefficients:
Low regime:
phi1.0 phi1.1 phi1.2 phi1.3
-0.2840885 1.9360245 -1.4690397 0.4925477
High regime:
phi2.0 phi2.1 phi2.2 phi2.3
4.3974268 -2.3388445 2.2482280 -0.9932285
Smoothing parameter: gamma = 48.02
Threshold
Variable: external
Value: 0.3224
> rdx.lstar
Non linear autoregressive model
LSTAR model
Coefficients:
Low regime:
phi1.0 phi1.1 phi1.2 phi1.3
-0.4204974 1.8394945 -1.4018456 0.4320727
High regime:
phi2.0 phi2.1 phi2.2 phi2.3
3.939309 -3.911762 3.639241 -1.489407
Smoothing parameter: gamma = 45.87
Threshold
Variable: external
Value: 0.3459
> sum.s<-summary(ndx.lstar)
错误于summary.lstar(ndx.lstar) : dims [product 48]与对象长度[0]不匹配
> summary(ndx.lstar)
错误于summary.lstar(ndx.lstar) : dims [product 48]与对象长度[0]不匹配
26# epoh