全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件
3728 7
2010-10-31
Frontiers of Statistical Decision Making and Bayesian Analysis                                                                                In Honor of James O. Berger
                                                                                       
                                                                                                                                                                Chen, M.-H.; Müller, P.; Sun, D.; Ye, K.; Dey, D.K. (Eds.)

                       
                                                                                                                                                1st Edition., 2010, XXIV, 636 p., Hardcover
                                ISBN: 978-1-4419-6943-9


                                                                                       

                                                                                       
  •                                 About this book
                                                       
                                                                                                                                                                          Research in Bayesian analysis and statistical decision theory is rapidly expanding and diversifying, making it increasingly more difficult for any single researcher to stay up to date on all current research frontiers. This book provides a review of current research challenges and opportunities. While the book can not exhaustively cover all current research areas, it does include some exemplary discussion of most research frontiers. Topics include objective Bayesian inference, shrinkage estimation and other decision based estimation, model selection and testing, nonparametric Bayes, the interface of Bayesian and frequentist inference, data mining and machine learning, methods for categorical and spatio-temporal data analysis and posterior simulation methods. Several major application areas are covered: computer models, Bayesian clinical trial design, epidemiology, phylogenetics, bioinformatics, climate modeling and applications in political science, finance and marketing. As a review of current research in Bayesian analysis the book presents a balance between theory and applications. The lack of a clear demarcation between theoretical and applied research is a reflection of the highly interdisciplinary and often applied nature of research in Bayesian statistics. The book is intended as an update for researchers in Bayesian statistics, including non-statisticians who make use of Bayesian inference to address substantive research questions in other fields. It would also be useful for graduate students and research scholars in statistics or biostatistics who wish to acquaint themselves with current research frontiers. Ming-Hui Chen is Professor of Statistics at the University of Connecticut; Dipak K. Dey is Head and Professor of Statistics at the University of Connecticut; Peter Müller is Professor of Biostatistics at the University of Texas M. D. Anderson Cancer Center; Dongchu Sun is Professor of Statistics at the University of Missouri- Columbia; and Keying Ye is Professor of Statistics at the University of Texas at San Antonio.
                                                        Content Level » Research
                                                                                        Keywords »                                                                                                                Bayesian statistics                                                                         -                                         Biostatistics                                                                         -                                         Computer simulation                                                                         -                                         Decision problems                                                                         -                                         Objective Bayesian inference                                                         
                                                                                                            Related subjects »                                                                                                            Statistical Theory and Methods                                                             
                                                                        Table of contents
                        Introduction.
- Objective Bayesian inference with applications.
- Bayesian decision based estimation and predictive inference.
- Bayesian model selection and hypothesis tests.
- Bayesian computer models.
- Bayesian nonparametrics and semi-parametrics.
- Bayesian case influence and frequentist interface.
- Bayesian clinical trials.
- Bayesian methods for genomics, molecular, and systems biology.
- Bayesian data mining and machine learning.
- Bayesian inference in political and social sciences, finance, and marketing.
- Bayesian categorical data analysis.
- Bayesian geophysical, spatial, and temporal statistics.
- Posterior simulation and Monte Carlo methods.

Amazon链接:
http://www.amazon.com/Frontiers-Statistical-Decision-Bayesian-Analysis/dp/1441969438

文件说明:springer高清晰打印版,分章节上传,方便大家有选择性下载
附件列表

2-Objective Bayesian Inference with Applications.PDF

大小:1.03 MB

只需: 2 个论坛币  马上下载

4-Bayesian Model Selection and Hypothesis Tests.PDF

大小:1.25 MB

只需: 2 个论坛币  马上下载

5-Bayesian Inference for Complex Computer Model.PDF

大小:590.5 KB

只需: 2 个论坛币  马上下载

6-Bayesian Nonparametrics and Semi-parametrics.PDF

大小:511.08 KB

只需: 2 个论坛币  马上下载

7-Bayesian Influence and Frequentist Interface.PDF

大小:558.08 KB

只需: 2 个论坛币  马上下载

8-Bayesian Clinical Trials.PDF

大小:480.86 KB

只需: 2 个论坛币  马上下载

10-Bayesian Data Mining and Machine Learning.PDF

大小:676.81 KB

只需: 2 个论坛币  马上下载

12-Bayesian Categorical Data Analysis.PDF

大小:617.34 KB

只需: 2 个论坛币  马上下载

14-Posterior Simulation and Monte Carlo Methods.PDF

大小:774.03 KB

只需: 2 个论坛币  马上下载

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2010-10-31 16:15:19
帖子发出之后,自己才发现,排版真是丑啊,不好意思啦,也不知道如何更改。
做个小的弥补,加个google book的链接,http://books.google.com.hk/books ... e&q&f=false,大家可以先去看下目录之类。
书是为了纪念James O. Berger(COPSS1985)在bayesian analysis and decision theory所做的开创性贡献,在其六十寿辰之际,Springer2010年特别出版的一本学术专著。各章节的作者也大都是统计界的牛人,例如:Edward I. George, Xiao-Li Meng, Adrian E. Raftery,  Andrew Gelman...
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2011-1-9 16:47:54
一本书分成这么多章节卖,麻烦不麻烦?
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2011-2-6 22:46:39
怎么没有参考文献,请补上。
2# hercy
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2011-2-17 09:23:56
2# hercy

呵呵 没钱 楼主能免费给我发一份不  187339427@qq.com  谢谢了啊
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2011-8-23 01:07:17
这本书太贵了, 下起来也很麻烦。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群