我在估算cross-covariance matrix時遇到了困難,希望能得到幫助。
假設已有dataset:
company
| date
| stock return |
| a1 | DATE#1 | RET(a1,1) |
| a1 | DATE#2 | RET(a1,2) |
| ... | ... | ... |
| a1 | DATE#T
| RET(a1,T) |
| a2 | DATE#1
| RET(a2,1) |
| ... | .... | .... |
| a2 | DATE#T
| RET(a2,T) |
| ... | ... | ... |
| a5000 | DATE#1 | RET(a5000,1) |
| ... | ... | ... |
| a5000 | DATE#T | RET(a5000,T) |
請問該如何利用PROC TIMESERIES,估算這5000家公司股票報酬率的cross-covariance matrix呢?
cross-covariance:
GAMMA(K)=E[(Xi,t
- E(Xi
))(Xj,t+K
- E(Xj
))],
i=1,2,...,N;
j=1,2,...,N;
N: total number of companies
K: lag period
-----
我嘗試透過PROC IML建立新的dataset(如下),但遇到memory相關問題
company i
| company j
| date | return i
| return j
|
...
| ...
| ...
| ...
| ...
|