2# yizhengchina
5 Modeling Univariate Distributions . 79
5.1 Introduction . 79
5.2 Parametric Models and Parsimony . 79
5.3 Location, Scale, and Shape Parameters . 80
5.4 Skewness, Kurtosis, and Moments . 81
5.4.1 The Jarque{Bera test . 86
5.4.2 Moments . 86
5.5 Heavy-Tailed Distributions . 87
5.5.1 Exponential and Polynomial Tails . 87
5.5.2 t-Distributions . 88
5.5.3 Mixture Models . 90
5.6 Generalized Error Distributions . 93
5.7 Creating Skewed from Symmetric Distributions . 95
5.8 Quantile-Based Location, Scale, and Shape Parameters . 97
5.9 Maximum Likelihood Estimation . 98
5.10 Fisher Information and the Central Limit Theorem for the
MLE . 98
5.11 Likelihood Ratio Tests . 101
5.12 AIC and BIC . 102
5.13 Validation Data and Cross-Validation . 103
5.14 Fitting Distributions by Maximum Likelihood . 106
5.15 Proˉle Likelihood . 115
5.16 Robust Estimation . 117
5.17 Transformation Kernel Density Estimation with a Parametric
Transformation . 119
5.18 Bibliographic Notes . 122
5.19 References . 122
5.20 R Lab . 123
5.20.1 Earnings Data . 123
5.20.2 DAX Returns . 125
5.21 Exercises . 126
6 Resampling . : 131
6.1 Introduction . 131
6.2 Bootstrap Estimates of Bias, Standard Deviation, and MSE . 132
6.2.1 Bootstrapping the MLE of the t-Distribution . 133
6.3 Bootstrap Conˉdence Intervals . 136
6.3.1 Normal Approximation Interval . 136
6.3.2 Bootstrap-t Intervals . 137
6.3.3 Basic Bootstrap Interval . 139
6.3.4 Percentile Conˉdence Intervals . 140
6.4 Bibliographic Notes . 144
6.5 References . 145
6.6 R Lab . 145
6.6.1 BMW Returns . 145
6.7 Exercises . 147
7 Multivariate Statistical Models . : 149
7.1 Introduction . 149
7.2 Covariance and Correlation Matrices . 149
7.3 Linear Functions of Random Variables . 151
7.3.1 Two or More Linear Combinations of Random Variables153
7.3.2 Independence and Variances of Sums . 154
7.4 Scatterplot Matrices . 155
7.5 The Multivariate Normal Distribution . 156
7.6 The Multivariate t-Distribution . 157
7.6.1 Using the t-Distribution in Portfolio Analysis . 160
7.7 Fitting the Multivariate t-Distribution by Maximum Likelihood160
7.8 Elliptically Contoured Densities . 162
7.9 The Multivariate Skewed t-Distributions . 164
7.10 The Fisher Information Matrix . 166
7.11 Bootstrapping Multivariate Data . 167
7.12 Bibliographic Notes . 169
7.13 References . 169
7.14 R Lab . 169
7.14.1 Equity Returns . 169
7.14.2 Simulating Multivariate t-Distributions . 171
7.14.3 Fitting a Bivariate t-Distribution . 172
7.15 Exercises . 173
8 Copulas . 175
8.1 Introduction . 175
8.2 Special Copulas . 177
8.3 Gaussian and t-Copulas . 177
8.4 Archimedean Copulas . 178
8.4.1 Frank Copula . 178
8.4.2 Clayton Copula . 180
8.4.3 Gumbel Copula . 181
8.5 Rank Correlation . 182
8.5.1 Kendall's Tau . 183
8.5.2 Spearman's Correlation Coe±cient . 184
8.6 Tail Dependence . 185
8.7 Calibrating Copulas . 187
8.7.1 Maximum Likelihood . 188
8.7.2 Pseudo-Maximum Likelihood. 188
8.7.3 Calibrating Meta-Gaussian and Meta-t-Distributions . 189
8.8 Bibliographic Notes . 193
8.9 References . 195
8.10 Problems . 195
8.11 R Lab . 195
8.11.1 Simulating Copulas . 195
8.11.2 Fitting Copulas to Returns Data . 197
8.12 Exercises . 200